首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel E. coli mutants deficient in biosynthesis of 5- methylaminomethyl -2-thiouridine were isolated based on a phenotype of reduced readthrough at UAG codons. They define 2 new loci trmE and trmF , near 83' on the E. coli map. These mutants are different from strains carrying trmC mutations, which are known to confer a methylation deficiency in biosynthesis of 5- methylaminomethyl -2-thiouridine. tRNA from mutants carrying trmE or trmF mutations was shown to carry 2-thiouridine instead of 5- methylaminomethyl -2-thiouridine. This deficiency affects the triplet binding properties of the mutant tRNA. Our results suggest that the 5- methylaminomethyl group stabilizes the basepairing of this modified nucleotide with G, most likely through direct interaction with the ribosomal binding site(s).  相似文献   

2.
Mutations in three Escherichia coli K-12 genes were isolated that reduce the efficiency of the lysine-inserting nonsense suppressor supL. These antisuppressor mutations asuD, asuE, and asuF map at 61.9, 25.3, and 76.3 min, respectively, on the E. coli chromosome. Biochemical and genetic analysis of the mutant strains revealed the reason for the antisuppressor phenotype for two of these genes. The activity of lysyl-tRNA synthetase was reduced in strains with asuD mutations. The modification of 5-methylaminomethyl-2-thiouridine, the wobble base of tRNALys, was impaired in asuE mutant strains, presumably at the 2-thiolation step.  相似文献   

3.
A selenium-containing nucleoside, 5-methylaminomethyl-2-selenouridine (mnm5se2U), is present in lysine- and glutamate-isoaccepting tRNA species of Escherichia coli. The synthesis of mnm5se2U is optimum (4 mol/100 mol tRNA) when selenium is present at about 1 microM concentration and is neither decreased by a high (8 mM) level of sulfur in the medium nor increased by excessive (10 or 100 microM) levels of selenium. Lysine- and glutamate-isoaccepting tRNA species that contain 5-methylaminomethyl-2-thiouridine (mnm5s2U) coexist with the seleno-tRNAs in E. coli cells and a reciprocal relationship between the mnm5se2U- and the mnm5s2U-containing species is maintained under a variety of growth conditions. The complete 5-methylaminomethyl side chain is not a prerequisite for introduction of selenium at the 2-position. In E. coli mutants deficient in the ability to synthesize the 5-methylaminomethyl substituent, both the 2-thiouridine and the corresponding 2-selenouridine derivatives of intermediate forms are accumulated. Broken cell preparations of E. coli synthesize mnm5se2U in tRNAs by an ATP-dependent process that appears to involve the replacement of sulfur in mnm5s2U with selenium.  相似文献   

4.
Multiple defects in Escherichia coli mutants lacking HU protein.   总被引:23,自引:12,他引:11       下载免费PDF全文
The HU protein isolated from Escherichia coli, composed of two partially homologous subunits, alpha and beta, shares some of the properties of eucaryotic histones and is a major constituent of the bacterial nucleoid. We report here the construction of double mutants totally lacking both subunits of HU protein. These mutants exhibited poor growth and a perturbation of cell division, resulting in the formation of anucleate cells. In the absence of HU, phage Mu was unable to grow, to lysogenize, or to carry out transposition.  相似文献   

5.
Two independent mutants of Escherichia coli K-12, selected for their inability to grow anaerobically with fumarate as the terminal electron acceptor, were shown to be deficient in menaquinone biosynthesis. In both cases, exogenously supplied 2-succinylbenzoate promoted normal anaerobic growth on a lactate plus fumarate medium. Anaerobic growth of the mutants on glucose minimal medium was impaired but could be restored to normal by adding either uracil or 2-succinylbenzoate. The addition of 2-succinylbenzoate (but not uracil) permitted the synthesis of menaquinone and demethylmenaquinone by both mutants. The menaquinone content of the parental strain grown on lactate plus fumarate was three times greater than observed after growth on glucose. Transduction studies with phage P1 showed that the two mutations are very closely linked and probably affect the same gene, menC, which is cotransducible with nalA (23%), glpT (51%), and purF (8 to 14%). The gene order nalA-nrdA-glpTA-menC-purF was indicated. The results were consistent with 2-succinylbenzoate being an intermediate in menaquinone biosynthesis and show that the gene designated menC (located at 48.65 min of the E. coli chromosome) is involved in the conversion of chorismate to 2-succinylbenzoate. It was also concluded that menaquinone is essential for electron transport to fumarate in E. coli.  相似文献   

6.
An efficient method was devised to isolate temperature sensitive mutants of E. coli defective in tRNA biosynthesis. Mutants were selected for their inability to express suppressor activity after su3+-transducing phage infection. In virtually all the mutants tested, temperature sensitive synthesis of tRNATyr was demonstrated. Electrophoretic fractionation of 32P labeled RNA synthesized at high temperature showed in some mutants changes in mobility of the main tRNA band and the appearance of slow migrating new species of RNA. Temperature sensitive function of mutant cells was also evident in tRNA synthes: directed by virulent phage T4 and BF23. We conclude that although the mutants show individual differences, many are temperature sensitive in tRNA maturation functions.  相似文献   

7.
The molybdopterin content of Escherichia coli mod and mog mutants was estimated by conversion to the form A derivative. The results are in accord with complete phenotypic repair of mod, and incomplete repair of mog, by culture in high concentrations of molybdate. A possible role for Mog as a molybdochelatase is discussed.  相似文献   

8.
9.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.  相似文献   

10.
We have isolated and characterized the Chlamydomonas reinhardtii genes for molybdenum cofactor biosynthesis, namely, CNX1G and CNX1E, and expressed them and their chimeric fusions in Chlamydomonas and Escherichia coli. In all cases, the wild-type phenotype was restored in individual mutants as well as in a CNX1G CNX1E double mutant. Therefore, CrCNX1E is the first eukaryotic protein able to complement an E. coli moeA mutant.  相似文献   

11.
12.
13.
14.
Mutants of Escherichia coli deficient in adenosylmethionine decarboxylase, an enzyme in the biosynthetic pathway for spermidine, were isolated after mutagenesis of E. coli K 12 with N-methyl-N-nitro-N-nitrosoguanidine or with the bacteriophage Mu. The mutated gene, designated speD, is at 2.7 min on the E. coli chromosome map. In several of the mutants resulting from Mu insertion both adenosylmethionine decarboxylase activity and spermidine were undetectable. The absence of spermidine from speD strains proves the essential role of adenosylmethionine decarboxylase in the biosynthetic pathway for spermidine. Despite the complete absence of spermidine, these mutants grew at 75% of the wild type rate.  相似文献   

15.
16.
17.
18.
19.
Summary Spontaneous revertants of a temperature-sensitive Escherichia coli strain harboring a thermolabile leucyl-tRNA synthetase and seryl-tRNA synthetase were selected for growth at 40°C. Among these, strains were found with increased levels of both thermolabile synthetases. Two distinct genetic loci were found responsible for enzyme overproduction. leuR, located near xyl, causes elevated levels of leucyl-tRNA synthetase; while serR, located near leu, causes elevated levels of seryl-tRNA synthetase.The preceding paper in this series is by R. LaRossa, J. Mao, K.B. Low and D. Söll. J. Mol. Biol. 117, 1049 (1977)  相似文献   

20.
A new enzyme, which catalyzes the transfer of a methyl group to tRNA to form 5-methylaminomethyl-2-thiouridylate, was isolated from E.coli by a procedure including affinity chromatography. The purified enzyme was nearly homogeneous upon disc electrophoresis. Using methyl-deficient tRNAGlu of E.coli as substrate, the 5-methylaminomethyl-2-thiouridylate residue synthesized was mostly found in the anticodon loop, showing a coincidence of the modification site invitro with that invivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号