首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We cloned, expressed, and purified the Escherichia coli YggH protein and show that it catalyzes the S-adenosyl-L-methionine-dependent formation of N(7)-methylguanosine at position 46 (m(7)G46) in tRNA. Additionally, we generated an E. coli strain with a disrupted yggH gene and show that the mutant strain lacks tRNA (m(7)G46) methyltransferase activity.  相似文献   

2.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N(2)-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m(2)G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNA(Arg), tRNA(Phe), and tRNA(Val) yielded significantly more m(2)G than the bulk tRNA. The K(m) for tRNA(Arg) in the methylation reaction with enzymes from either tissue was 7.8 x 10(-7) M as compared to the value 1 x 10(-5) M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNA(Arg), tRNA(Phe), and tRNA(Val), A-m(2)G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5'-end contained in a sequence (s(4))U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

3.
In Salmonella enterica serovar Typhimurium a mutation in the purF gene encoding the first enzyme in the purine pathway blocks, besides the synthesis of purine, the synthesis of thiamine when glucose is used as the carbon source. On carbon sources other than glucose, a purF mutant does not require thiamine, since the alternative pyrimidine biosynthetic (APB) pathway is activated. This pathway feeds into the purine pathway just after the PurF biosynthetic step and upstream of the intermediate 4-aminoimidazolribotide, which is the common intermediate in purine and thiamine synthesis. The activity of this pathway is also influenced by externally added pantothenate. tRNAs from S. enterica specific for leucine, proline, and arginine contain 1-methylguanosine (m(1)G37) adjacent to and 3' of the anticodon (position 37). The formation of m(1)G37 is catalyzed by the enzyme tRNA(m(1)G37)methyltransferase, which is encoded by the trmD gene. Mutations in this gene, which result in an m(1)G37 deficiency in the tRNA, in a purF mutant mediate PurF-independent thiamine synthesis. This phenotype is specifically dependent on the m(1)G37 deficiency, since several other mutations which also affect translation fidelity and induce slow growth did not cause PurF-independent thiamine synthesis. Some antibiotics that are known to reduce the efficiency of translation also induce PurF-independent thiamine synthesis. We suggest that a slow decoding event at a codon(s) read by a tRNA(s) normally containing m(1)G37 is responsible for the PurF-independent thiamine synthesis and that this event causes a changed flux in the APB pathway.  相似文献   

4.
5.
Seven transfer ribonucleic acid (tRNA) methylase mutants were isolated from Escherichia coli K-12 by examining the ability of RNA prepared from clones of unselected mutagenized cells to accept methyl groups from S-adenosylmethionine catalyzed by crude enzymes from wild-type cells. Five of the mutants had an altered uracil-tRNA methylase; consequently their tRNA's lacked ribothymidine. One mutant had tRNA deficient in 7-methylguanosine, and one mutant contained tRNA lacking 2-thio-5-methylaminomethyluridine. The genetic loci of the three tRNA methylase mutants were distributed over the E. coli genome. The mutant strain deficient in 7-methylguanosine biosynthesis showed a reduced efficiency in the suppression of amber mutations carried by T4 or lambda phages.  相似文献   

6.
This paper describes the regulation of a transfer ribonucleic acid (tRNA) biosynthetic enzyme, the tRNA(m5U)methyltransferase (EC 2.1.1.35). This enzyme catalyzes the formation of 5-methyluridine (m5U, ribothymidine) in all tRNA chains of Escherichia coli. Partial deprivation of charged tRNAVal can be imposed by shifting strains carrying a temperature-sensitive valyl-tRNA ligase from a permissive to a semipermissive temperature. By using two such strains differing only in the allelic state of the relA gene, it was possible to show the tRNA(m5U)methyltransferase to be stringently regulated. Upon partial deprivation of charged tRNAVal, the differential rate of tRNA(m5U)methyltransferase synthesis was found to decrease in a strain with stringent RNA control (relA+), whereas it increased in the strain carrying the relA allele. This increase of accumulation of tRNA(m5U)methyltransferase activity required protein synthesis. Thus, when tRNA is partially uncharged in the cell, the relA gene product influences the expression of tRNA(m5U)methyltransferase gene.  相似文献   

7.
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1(Ser) gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1(Ser). Several genes containing UCA codons are normally expressed at 42 degrees C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1(Ser). In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.  相似文献   

8.
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.  相似文献   

9.
The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2.  相似文献   

10.
N(2)-methylguanosine (m(2)G) is found at position 6 in the acceptor stem of Thermus thermophilus tRNA(Phe). In this article, we describe the cloning, expression, and characterization of the T. thermophilus HB27 methyltransferase (MTase) encoded by the TTC1157 open reading frame that catalyzes the formation of this modified nucleoside. S-adenosyl-L-methionine is used as donor of the methyl group. The enzyme behaves as a monomer in solution. It contains an N-terminal THUMP domain predicted to bind RNA and contains a C-terminal Rossmann-fold methyltransferase (RFM) domain predicted to be responsible for catalysis. We propose to rename the TTC1157 gene trmN and the corresponding protein TrmN, according to the bacterial nomenclature of tRNA methyltransferases. Inactivation of the trmN gene in the T. thermophilus HB27 chromosome led to a total absence of m(2)G in tRNA but did not affect cell growth or the formation of other modified nucleosides in tRNA(Phe). Archaeal homologs of TrmN were identified and characterized. These proteins catalyze the same reaction as TrmN from T. thermophilus. Individual THUMP and RFM domains of PF1002 from Pyrococcus furiosus were produced. These separate domains were inactive and did not bind tRNA, reinforcing the idea that the THUMP domain acts in concert with the catalytic domain to target a particular position of the tRNA molecule.  相似文献   

11.
12.
Inosine (I) at position 34 (wobble position) of tRNA is formed by the hydrolytic deamination of a genomically encoded adenosine (A). The enzyme catalyzing this reaction, termed tRNA A:34 deaminase, is the heterodimeric Tad2p/ADAT2.Tad3p/ADAT3 complex in eukaryotes. In budding yeast, deletion of each subunit is lethal, indicating that the wobble inosine tRNA modification is essential for viability; however, most of its physiological roles remain unknown. To identify novel cell cycle mutants in fission yeast, we isolated the tad3-1 mutant that is allelic to the tad3(+) gene encoding a homolog of budding yeast Tad3p. Interestingly, the tad3-1 mutant cells principally exhibited cell cycle-specific phenotype, namely temperature-sensitive and irreversible cell cycle arrest both in G(1) and G(2). Further analyses revealed that in the tad3-1 mutant cells, the S257N mutation that occurred in the catalytically inactive Tad3 subunit affected its association with catalytically active Tad2 subunit, leading to an impairment in the A to I conversion at position 34 of tRNA. In tad3-1 mutant cells, the overexpression of the tad3(+) gene completely suppressed the decreased tRNA inosine content. Notably, the overexpression of the tad2(+) gene partially suppressed the temperature-sensitive phenotype and the decreased tRNA inosine content, indicating that the tad3-1 mutant phenotype is because of the insufficient I(34) formation of tRNA. These results suggest that the wobble inosine tRNA modification is essential for cell cycle progression in the G(1)/S and G(2)/M transitions in fission yeast.  相似文献   

13.
The existence of a conditional lethal temperature-sensitive mutant affecting peptidyl-tRNA hydrolase in Escherichia coli suggests that this enzyme is essential to cell survival. We report here the isolation of both chromosomal and multicopy suppressors of this mutant in pth, the gene encoding the hydrolase. In one case, the cloned gene responsible for suppression is shown to be lysV, one of three genes encoding the unique lysine acceptor tRNA; 10 other cloned tRNA genes are without effect. Overexpression of lysV leading to a 2- to 3-fold increase in tRNA(Lys) concentration overcomes the shortage of peptidyl-tRNA hydrolase activity in the cell at non-permissive temperature. Conversely, in pth, supN double mutants, where the tRNA(Lys) concentration is reduced due to the conversion of lysV to an ochre suppressor (supN), the thermosensitivity of the initial pth mutant becomes accentuated. Thus, cells carrying both mutations show practically no growth at 39 degrees C, a temperature at which the pth mutant grows almost normally. Growth of the double mutant is restored by the expression of lysV from a plasmid. These results indicate that the limitation of growth in mutants of E.coli deficient in Pth is due to the sequestration of tRNA(Lys) as peptidyl-tRNA. This is consistent with previous observations that this tRNA is particularly prone to premature dissociation from the ribosome.  相似文献   

14.
The reaction of wild-type and two mutant derivatives of RNase P have been examined with wild-type and mutant substrates. We show that a mutant derivative of tRNA(Tyr)Su3, tRNA(Tyr)Su3A15, in which the G15.C48(57) base-pair essential for folding of the tRNA moiety is altered, is a temperature-sensitive suppressor in vivo. The precursor to tRNA(Tyr)Su3A15 is cleaved in a temperature-sensitive manner in vitro by RNase P and with a higher Km compared to the precursor to tRNA(Tyr)Su3. The precursor to tRNA(Tyr)Su3A2, another temperature-sensitive suppressor in vivo in which the G2.C71(80) base-pair in the acceptor stem is changed to A2.C71(80), behaves like the precursor to tRNA(Tyr)Su3 in vitro; that is, it is not cleaved in a temperature-sensitive manner. Therefore, there are at least two ways in which a suppressor tRNA can acquire a temperature-sensitive phenotype in vivo. One of the mutant derivatives of RNase P we have tested, rnpA49, which affects the protein cofactor of the enzyme, has a decreased kcat compared to wild-type, which can explain its phenotype in vivo.  相似文献   

15.
R E Hurd  B R Reid 《Biochemistry》1979,18(18):4017-4024
Analysis of the low-field nuclear magnetic resonance (NMR) spectra of several class 1 D4V5 transfer ribonucleic acid (tRNA) species containing 7-methylguanosine in their variable loops reveals a set of six to seven tertiary base pair resonances, one of which is always located at ca. --13.4 ppm. Other tRNA species which do not contain 7-methyl-guanosine do not contain the tertiary resonance at --13.4 ppm. Chemical removal of 7-methylguanosine from several tRNAs containing the same dihydrouridine (DHU) helix sequence as yeast tRNAPhe results in the loss of the --13.4-ppm tertiary resonance. In the initiator methionine tRNA, which contains a different DHU helix sequence, the 7-methylguanosine hydrogen bond has been assigned at --14.55 ppm by chemical removal of this residue. In these experiments the aromatic C8H proton of 7-methylguanosine was also assigned (--9.1 ppm). The unexpectedly low-field position of the 7-methylguanosine resonance is explained by the deshielding effect of the delocalized positive charge in this nucleoside.  相似文献   

16.
A tRNA (guanine-2) methyltransferase has been purified to homogeneity from the protozoan Tetrahymena pyriformis. The enzyme methylates purified E. coli tRNAs which have a guanine residue at position 26 from the 5' end; it also methylates tRNA prepared from the m22G- yeast mutant trm 1. This methyltransferase is therefore equivalent to the guanine methyltransferase 2mGII found in mammalian extracts. The purified 2mGII from Tetrahymena is capable of forming both N2-methylguanine and N22-dimethylguanine on a single tRNA isoaccepting species; under conditions of limiting tRNA or long reaction times the predominant product is dimethylguanine. Analysis of the products formed under varying reaction conditions suggests that dimethylguanine formation is a two step process requiring dissociation of the enzyme-monomethylated tRNA intermediate.  相似文献   

17.
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.  相似文献   

18.
Purified bulk tRNA from Methanococcus vanielii (carbon source, formate) showed variation in the modified nucleoside pattern reported for Escherichia coli as analyzed by both ion-exchange and thin-layer chromatography. Ribothymidine and 7-methylguanosine were absent; 1-methyladenosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, thiolated nucleosides, pseudouridine, dihydrouridine, and O2'-methylcytidine were quantitated. In vitro methylation by M. Vannielii extracts with S-adenosylmethionine and undermethylated E. coli tRNA revealed active tRNA methyltransferases for formation of methylated residues found in native M. vannielii tRNA, but none for the formation of 7-methylguanosine or ribothymidine. The native M. vannielii tRNA became methylated in the 7-methylguanosine position by E. Coli extracts, but ribothymidine was not formed. Both M. vannielii and E. coli tRNA methyltransferases produced unidentified methylated residues in tRNA's lacking or deficient in ribothymidine.  相似文献   

19.
The wobble nucleoside 5-methylaminomethyl-2-thio-uridine (mnm5s2U) is present in bacterial tRNAs specific for Lys and Glu and 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U) in tRNA specific for Gln. The sulfur of (c)mnm5s2U may be exchanged by selenium (Se)–a reaction catalyzed by the selenophosphate-dependent tRNA 2-selenouridine synthase encoded by the mnmH (ybbB, selU, sufY) gene. The MnmH protein has a rhodanese domain containing one catalytic Cys (C97) and a P-loop domain containing a Walker A motif, which is a potential nucleotide binding site. We have earlier isolated a mutant of Salmonella enterica, serovar Typhimurium with an alteration in the rhodanese domain of the MnmH protein (G67E) mediating the formation of modified nucleosides having a geranyl (ge)-group (C10H17-fragment) attached to the s2 group of mnm5s2U and of cmnm5s2U in tRNA. To further characterize the structural requirements to increase the geranylation activity, we here report the analysis of 39 independently isolated mutants catalyzing the formation of mnm5ges2U. All these mutants have amino acid substitutions in the rhodanese domain demonstrating that this domain is pivotal to increase the geranylation activity. The wild type form of MnmH+ also possesses geranyltransferase activity in vitro although only a small amount of the geranyl derivatives of (c)mnm5s2U is detected in vivo. The selenation activity in vivo has an absolute requirement for the catalytic Cys97 in the rhodanese domain whereas the geranylation activity does not. Clearly, MnmH has two distinct enzymatic activities for which the rhodanese domain is pivotal. An intact Walker motif in the P-loop domain is required for the geranylation activity implying that it is the binding site for geranylpyrophosphate (GePP), which is the donor molecule in vitro in the geranyltransfer reaction. Purified MnmH from wild type and from the MnmH(G67E) mutant have bound tRNA, which is enriched with geranylated tRNA. This in conjunction with earlier published data, suggests that this bound geranylated tRNA may be an intermediate in the selenation of the tRNA.  相似文献   

20.
In Salmonella typhimurium, the tRNA(m1G37)methyltransferase (the product of the trmD gene) catalyzes the formation of m1G37, which is present adjacent and 3' of the anticodon (position 37) in seven tRNA species, two of which are tRNA(Pro)CGG and tRN(Pro)GGG. These two tRNA species also exist as +1 frameshift suppressor sufA6 and sufB2, respectively, both having an extra G in the anticodon loop next to and 3' of m1G37. The wild-type form of the tRNA(m1G37)methyltransferase efficiently methylates these mutant tRNAs. We have characterized one class of mutant forms of the tRNA(m1G37)methyltransferase that does not methylate the sufA6 tRNA and thereby induce extensive frameshifting resulting in a nonviable cell. Accordingly, pseudorevertants of strains containing such a mutated trmD allele in conjunction with the sufA6 allele had reduced frameshifting activity caused by either a 9-nt duplication in the sufA6tRNA or a deletion of its structural gene, or by an increased level of m1G37 in the sufA6tRNA. However, the sufB2 tRNA as well as the wild-type counterparts of these two tRNAs are efficiently methylated by this class of structural altered tRNA(m1G37)methyltransferase. Two other mutations (trmD3, trmD10) were found to reduce the methylation of all potential tRNA substrates and therefore primarily affect the catalytic activity of the enzyme. We conclude that all mutations except two (trmD3 and trmD10) do not primarily affect the catalytic activity, but rather the substrate specificity of the tRNA, because, unlike the wild-type form of the enzyme, they recognize and methylate the wild-type but not an altered form of a tRNA. Moreover, we show that the TrmD peptide is present in catalytic excess in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号