首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Midday depression of net photosynthesis and transpiration in the Mediterranean sclerophylls Arbutus unedo L. and Quercus suber L. occurs with a depression of mesophyll photosynthetic activity as indicated by calculated carboxylation efficiency (CE) and constant diurnal calculated leaf intercellular partial pressure of CO2 (Ci). This work examines the hypothesis that this midday depression can be explained by the distribution of patches of either wide-open or closed stomata on the leaf surface, independent of a coupling mechanism between stomata and mesophyll that results in a midday depression of photosynthetic activity of the mesophyll. Pressure infiltration of four liquids differing in their surface tension was used as a method to show the occurrence of stomatal patchiness and to determine the status of stomatal aperture within the patches. Liquids were selected such that the threshold leaf conductance necessary for infiltration through the stomatal pores covered the expected diurnal range of calculated leaf conductance (g) for these species. Infiltration experiments were carried out with leaves of potted plants under simulated Mediterranean summer conditions in a growth chamber. For all four liquids, leaves of both species were found to be fully infiltratable in the morning and in the late afternoon while during the periods leading up to and away from midday the leaves showed a pronounced patchy distribution of infiltratable and non-infiltratable areas. Similar linear relationships between the amount of liquid infiltrated and g (measured by porometry prior to detachment and infiltration) for all liquids clearly revealed the existence of pneumatically isolated patches containing only wide-open or closed stomata. The good correspondence between the midday depression of CE, calculated under the assumption of no stomatal patchiness, and the diurnal changes in non-infiltratable leaf area strongly indicates that the apparent reduction in mesophyll activity results from assuming no stomatal patchiness. It is suggested that simultaneous responses of stomata and mesophyll activity reported for other species may also be attributed to the occurrence of stomatal patchiness. In Quercus coccifera L., where the lack of constant diurnal calculated Ci and major depression of measured CE at noontime indicates different stomatal behavior, non-linear and dissimilar relationships between g and the infiltratable quantities of the four liquids were found. This indicates a wide distribution of stomatal aperture on the leaf surface rather than only wide-open or closed stomata.Dedicated to Professor Otto L. Lange on the occasion of his 65th birthday  相似文献   

2.
Summary Pressure infiltration of water into a leaf via the stomatal pores can be used to quickly determine whether all stomata are open, or as recently described for several mesophytic and xerophytic species, whether there is a non-homogeneous distribution of stomatal opening (stomatal patchiness) on the leaf surface. Information about this phenomenon is important since the commonly used algorithms for calculation of leaf conductance from water vapor exchange measurements imply homogeneously open stomata, which in the occurrence of stomatal patchiness will lead to erroneous results. Infiltration experiments in a growth chamber with leaves of the Mediterranean evergreen shrub Arbutus unedo, carried out under simulated Mediterranean summer day conditions, where the species typically exhibits a strong midday stomatal closure, revealed a temporary occurrence of stomatal patchiness during the phase of stomatal closure in the late morning and during the stomatal reopening in the afternoon. Leaves were, however, found to be fully (i.e. homogeneously) infiltratable in the morning and in the evening. At midday during maximum stomatal closure, leaves were almost non-infiltratable. During the day, the infiltrated amount of water was found to be linearly correlated with porometer measurements of leaf conductance of the same leaves, carried out with the attached leaves immediately before infiltration.  相似文献   

3.
The Climate Change Experiment (CLIMEX) is a unique large scale facility in which an entire undisturbed catchment of boreal vegetation has been exposed to elevated CO2 (560 ppm) and temperature (+3°C summer, +5°C winter) for the past three years with all the soil-plant-atmosphere linkages intact. Here, carbon isotope composition and stomatal density have been analysed from sequential year classes of needles of mature Scots pine trees (Pinus sylvestris L.) to investigate the response of time-integrated water-use efficiency (UWE) and stomatal density to CO2 enrichment and climate change. Carbon isotope discrimination decreased and WUE increased in cohorts of needles developing under increased CO2 and temperature, compared to needles on the same trees developing in pretreatment years. Mid-season instantaneous gas exchange, measured on the same trees for the past four years, indicated that these responses resulted from higher needle photosynthetic rates and reduced stomatal conductance. Needles of P. sylvestris developing under increased CO2 and temperature had consistently lower stomatal densities than their ambient grown counterparts on the same trees. The stomatal density of P. sylvestris needles was inversely correlated with δ13C-derived WUE, implying some effect of this morphological response on leaf gas exchange. Future atmospheric CO2 and temperature increases are therefore likely to improve the water economy of P. sylvestris, at least at the scale of individual needles, by affecting stomatal density and gas exchange processes.  相似文献   

4.
Patchy stomatal closure was observed in leaves of transgenic plants of Nicotiana plumbaginifolia producing antibodies that block the action of abscisic acid. Stomatal patchiness was induced by leaf detachment and subsequent water loss. Stomatal closure was followed by an irreversible reduction of maximal chlorophyll fluorescence. The degree of deviation from the A/ci-curve is correlated with steady-state diffusion conductance before leaf detachment. It is concluded that a heterogeneous sensitivity of stomata to abscisic acid is not directly involved in the induction of patchy stomatal closure.Keywords: Abscisic acid, chlorophyll fluorescence imaging, patchy stomatal closure, Nicotiana plumbaginifolia.   相似文献   

5.
Carbon-water balance and patchy stomatal conductance   总被引:11,自引:0,他引:11  
Stomata govern carbon-water balance by simultaneously controlling photosynthesis (A) and transpiration (E). It is unclear how patchy stomatal conductance influences this control. Cowan and Farquhar showed that for a given water supply available during a fixed time interval, carbon gain is maximized by a pattern of stomatal behavior that keeps the partial derivative of A with respect to E constant. This result implies that spatially uniform stomatal conductance is optimal (provided photosynthetic performance and environmental conditions are spatially uniform), so patchy stomatal conductance should be detrimental to carbon-water balance. However, these results required that the curvature of A versus E be uniformly negative. Using mathematical arguments and computer modeling, we show that (1) this caveat is violated under some environmental conditions, (2) water-use efficiency (A/E) is nearly unaffected, and can actually be improved, by patchiness under these conditions, and (3) patchiness has most often been observed under conditions similar to these. These results imply that under many conditions, patchiness may not significantly influence carbon-water balance, consistent with recent work suggesting patchiness may be common but unobserved. Additionally, we discuss implications of these results that muddle the definition of `optimal' in the context of plant gas exchange in some situations, and extend the work of Cowan and Farquhar under conditions causing positive curvature in A versus E. Received: 15 May 1998 / Accepted: 14 October 1998  相似文献   

6.
Images of chlorophyll fluorescence were used to demonstrate patchy stomatal closure at low humidities in leaves of well-watered Xanthium strumarium plants. The pattern and extent of patchy stomatal closure were shown to be different for the two surfaces of amphistomatous leaves by taking images of leaves with CO2 available to only one leaf was exposed to low humidity, patchiness was more extensive on that surface. Gas-exchange experiments were also conducted to determine the apparent photosynthetic capacity of the mesophyll (photosynthesis rate at constant ci when it was supplied with CO2 through both surfaces or through each surface alone. These experiments showed declines in the apparent photosynthetic capacity of the mesophyll at low humidities that were consistent with patchy stomatal closure on one or both surfaces. The results suggest that patchy stomatal closure can be a factor in the steady-state reponses of stomata to humidity. In amphistomatous leaves this is further complicated by the fact that patches on one epidermis may not coincide with those of the other surface.  相似文献   

7.
The appearance of stomatal patchiness in response to rapid (seconds) changes in light has been studied in European beech, Fagus sylvatica L., and, by comparison, in a further 17 different woody species from the understorey of a European beech forest, using a simple water infiltration method. Water infiltrated areoles indicate open stomata. Since infiltration changes optical characteristics of a leaf section it can be analysed by photography, computer-aided image analysis and by weighing. For F. sylvatica clear differences were found between infiltration of cotyledons (no patchy pattern) and any other leaf type. Despite identical cultivation, leaves of the same type and age from different individual plants responded differently to application of 30 s of light after darkness. In contrast, the patchiness patterns were very similar for leaves of the same type originating from the same plant. Infiltration patterns after a light-fleck, observed on different leaves as a series of momentary clusters, probably indicate waves of opening stomata moving across the leaf blade. During and after a 30 s light-fleck infiltration increased and it continued to increase in the dark up to 10 min, indicating increasing stomatal opening over that period. In general, shade leaves became more infiltrated (by weight) than half-shade or sun leaves, due to larger intercellular air spaces. All species, without exception, showed patchy infiltration and, thus, non-uniform stomatal opening. Measuring leaf gas exchange (as ”quasi-steady states” using a fast responding system) during photosynthetic induction resulted in very similar CO2 responses of net photosynthesis (A/c i) as in the true steady state, proving that, in shade and half-shade leaves, the presence of stomatal patchiness does not necessarily affect the calculation of intercellular CO2 concentrations. Causes and consequences of stomatal patchiness are discussed. Received: 18 November 1998 / Accepted: 1 July 1999  相似文献   

8.
The effects of partial debudding on photosynthesis, stomatal conductance and nitrogen contents of 1-year-old needles and newly grown needles were studied in Picea jezoensis (Sieb. et Zucc.). Seventy-five percent of the buds of P.jezoensis seedlings were removed soon after bud break. Gas exchange was measured three times for 1-year-old needles and twice for current-year needles. The photosynthetic rates of 1-year-old needles were greater in debudded seedlings than in control seedlings, and the difference increased as the growing season progressed. This greater photosynthetic rate in debudded seedlings was accompanied by greater stomatal conductance. However, neither the photosynthetic rates nor the stomatal conductance of current-year needles differed between debudded and control seedlings after the needles had fully expanded. Debudding also had no effect on mass-based nitrogen contents in either the 1-year-old or the current-year needles. Area-based nitrogen in the 1-year-old needles did not differ between debudded and control seedlings, but was greater in debudded seedlings than in control seedlings in current-year needles. These results suggest that the enhanced photosynthetic rate is more likely a result of an increased root/leaf ratio that reduces the stomatal limitation of photosynthetic rate than a result of altered sink-source relationships or increased leaf nitrogen content.  相似文献   

9.
Different behaviour of small groups of stomata on a single leaf blade (stomatal patchiness) is reviewed. The occurrence of stomatal patchiness depends on plant species, age, leaf position, environmental conditions,etc. The possibility of errors in conventional evaluation of stomatal and non-stomatal (biochemical) limitations of photosynthesis resulting from patchy stomatal closure is analysed. The consequences of stomatal patchiness for leaf and plant photosynthesis and water economy are discussed. A brief survey of the techniques currently used for detection and quantification of stomatal patchiness is presented.  相似文献   

10.
Synopsis The spatial patchiness at age was measured for Pacific herring,Clupea harengus pallasi, larvae of a small coastal inlet. Lloyd's index of patchiness decreased from 3.8 at hatching to a minimum of 1.5 at 25–30 d and then increased to 2.5 at 50 d. This two-cycle pattern resembles that measured by others for the larvae of other species of schooling pelagic fishes. It differs by being several times lower in magnitude. This is attributed to two factors: (1) a rapid reduction in patchiness from a relatively high level in the demersal egg interval to a lower level in the planktonic larval interval as larvae are released into the water column over a period of 2–4 days, and (2) foraging by larval herring for prey that are larger, more dilute, and less patchy than the prey of other, smaller pelagic fish larvae.  相似文献   

11.
Rates of photosynthesis vary with foliage age and typically decline from full-leaf expansion until senescence occurs. This age-related decline in photosynthesis is especially important in species that retain foliage for several years, yet it is not known whether the internal conductance to CO2 movement (g i) plays any role. More generally, g i has been measured in only a few conifers and has never been measured in leaves or needles older than 1 year. The effect of ageing on g i was investigated in Pinus pinaster, a species that retains needle for 4 or more years. Measurements were made in autumn when trees were not water limited and after leaf expansion was complete. Rates of net photosynthesis decreased with needle age, from 8 μmol m−2 s−1 in fully expanded current-year needles to 4.4 μmol m−2 s−1 in 3-year-old needles. The relative limitation due to internal conductance (0.24–0.35 out of 1) was in all cases larger than that due to stomatal conductance (0.13–0.19 out of 1). Internal conductance and stomatal conductance approximately scaled with rates of photosynthesis. Hence, there was no difference among year-classes in the relative limitations posed by internal and stomatal conductance or evidence that they cause the age-related decline in photosynthesis. There was little evidence that the age-related decline in photosynthesis was due to decreases in contents of N or Rubisco. The decrease in rates of photosynthesis from current-year to older needles was instead related to a twofold decrease in rates of photosynthesis per unit nitrogen and V cmax/Rubisco (i.e., in vivo specific activity).  相似文献   

12.
During spring and autumn 1991, potted 6-yearold spruce trees (Picea abies (L.) Karst.) were fumigated with 60 nl·1–1 15NO2 for 4 days under controlled conditions in constant light. Current and previous flush needles, the bark and the fine roots were analysed for total 15N content and incorporation of 15N into the -amino nitrogen of free amino acids. In addition, in vitro nitrate reductase activity and stomatal conductance of the needles were measured. Nitrate reductase activity was significantly higher in the needles of fumigated trees compared to control trees exposed to filtered air. With an average of 9.1% 15N, free glutamate was the pool with the most label. Taking into account the time-course of the labelling of this pool, this figure can be taken as an estimate of the minimum contribution of NO2 to the N nutrition of the needles. 15N-labelled amino acids were also detected in the bark and the roots, indicating export from the needles.  相似文献   

13.
Fluorescence and thermal imaging were used to examine the dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves following a decrease in ambient humidity. Patches were not observed in all experiments, and in many experiments the patches were short-lived. In some experiments, however, patches persisted for many hours and showed complex temporal and spatial patterns. Rapidly sampled fluorescence images showed that the measurable variations of these patches were sufficiently slow to be captured by fluorescence images taken at 3-min intervals using a saturating flash of light. Stomatal patchiness with saturating flashes of light was not demonstrably different from that without saturating flashes of light, suggesting that the regular flashes of light did not directly cause the phenomenon. Comparison of simultaneous fluorescence and thermal images showed that the fluorescence patterns were largely the result of stomatal conductance patterns, and both thermal and fluorescence images showed patches of stomatal conductance that propagated coherently across the leaf surface. These nondispersing patches often crossed a given region of the leaf repeatedly at regular intervals, resulting in oscillations in stomatal conductance for that region. The existence of these coherently propagating structures has implications for the mechanisms that cause patchy stomatal behaviour as well as for the physiological ramifications of this phenomenon.  相似文献   

14.
Šantrůček  J.  Hronková  M.  Květoň  J.  Sage  R.F. 《Photosynthetica》2003,41(2):241-252
Environmental factors that induce spatial heterogeneity of stomatal conductance, g s, called stomatal patchiness, also reduce the photochemical capacity of CO2 fixation, yet current methods cannot distinguish between the relative effect of stomatal patchiness and biochemical limitations on photosynthetic capacity. We evaluate effects of stomatal patchiness and the biochemical capacity of CO2 fixation on the sensitivity of net photosynthetic rate (P N) to stomatal conductance (g s), θ (θ = δP N/g s). A qualitative model shows that stomatal patchiness increases the sensitivity θ while reduced biochemical capacity of CO2 fixation lowers θ. We used this feature to distinguish between stomatal patchiness and mesophyll impairments in the photochemistry of CO2 fixation. We compared gas exchange of sunflower (Helianthus annuus L.) plants grown in a growth chamber and fed abscisic acid, ABA (10−5 M), for 10 d with control plants (-ABA). P N and g s oscillated more frequently in ABA-treated than in control plants when the leaves were placed into the leaf chamber and exposed to a dry atmosphere. When compared with the initial CO2 response measured at the beginning of the treatment (day zero), both ABA and control leaves showed reduced P N at particular sub-stomatal CO2 concentration (c i) during the oscillations. A lower reduction of P N at particular g s indicated overestimation of c i due to stomatal patchiness and/or omitted cuticular conductance, g c. The initial period of damp oscillation was characterised by inhibition of chloroplast processes while stomatal patchiness prevailed at the steady state of gas exchange. The sensitivity θ remained at the original pre-treatment values at high g s in both ABA and control plants. At low g s, θ decreased in ABA-treated plants indicating an ABA-induced impairment of chloroplast processes. In control plants, g c neglected in the calculation of g s was the likely reason for apparent depression of photosynthesis at low g s. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Moraes EM  Abreu AG  Andrade SC  Sene FM  Solferini VN 《Genetica》2005,125(2-3):311-323
The genetic variability and population genetic structure of six populations of Praecereus euchlorus and Pilosocereus machrisii were investigated. The genetic variability in single populations of Pilosocereus vilaboensis, Pilosocereus aureispinus, and Facheiroa squamosa was also examined. All of these cacti species have a patchy geographic distribution in which they are restricted to small areas of xeric habitats in eastern Brazil. An analysis of genetic structure was used to gain insights into the historical mechanisms responsible for the patchy distribution of P. euchlorus and P. machrisii. High genetic variability was found at the populational level in all species (P=58.9–92.8%, Ap=2.34–3.33, He=0.266–0.401), and did not support our expectations of low variability based on the small population size. Substantial inbreeding was detected within populations (FIS=0.370–0.623). In agreement with their insular distribution patterns, P. euchlorus and P. machrisii had a high genetic differentiation (FST=0.484 and FST=0.281, respectively), with no evidence of isolation by distance. Accordingly, estimates of gene flow (Nm) calculated from FST and private alleles were below the level of Nm=1 in P. machrisii and P. euchlorus. These results favored historical fragmentation as the mechanism responsible for the patchy distribution of these two species. The genetic distance between P. machrisii and P. vilaboensis was not compatible with their taxonomic distinction, indicating a possible local speciation event in this genus, or the occurrence of introgression events.  相似文献   

16.
Summary At the end of a 4-year period of gas exchange measurements in a natural stand in the Lower Bavarian Forest, needles of an adult spruce [Picea abies (L.) Karst.] were harvested from two chambers, one with pure air and the other with ambient air. The needles were examined as to their histological properties in the stomatal apparatus and in the bundle sheath. In needles from the polluted air UV absorbance at 280 nm was decreased in the walls of the stomatal apparatus. Simultaneously, the deposition of compounds with an absorption maximum at 310 nm increased within the encrusted plate-like thickenings of the subsidiary cells. The contents of the lumina of hypodermal cells and of the bundle sheath exhibited a greater degree of autofluorescence in ambient-air material than in pure-air leaf organs. Differences between needles exposed to pure and polluted air are gradual. The damaged condition is rare in pure air, common in polluted air. The needles from outside the chambers occupied an intermediate position between pure-air and ambient-air needles. This fact is traced to an unnaturally high pollutant load in the liquid phase of the needle surfaces within the ambient-air chamber because in order to compensate pollutant losses within the system, SO2 and O3 were added even during periods of irrigation. The reduction of absorption capacity at 280 nm in the walls of the stomatal apparatus is attributed to destruction of lignin due to the high reactivity of the pollutants in the liquid phase on the damp needle surface. The importance of delignification with regard to hydroregulation is discussed.  相似文献   

17.
We investigated the occurrence of patchy stomatal behavior in leaves of saplings and a forest canopy tree of Quercus crispula Blume. Through a combination of leaf gas-exchange measurements and numerical simulation, we detected patterns of stomatal closure (either uniform or patchy bimodal) coupled with depression of net assimilation rate (A). There was a clear inhibition of A associated with stomatal closure in leaves of Q. crispula during the day, but the magnitude of inhibition varied among days and growing conditions. Comparisons of observed and simulated A values for both saplings and the canopy tree identified patterns of stomatal behavior that shifted flexibly between uniform and patchy frequency distributions depending on environmental conditions. Bimodal stomatal closure explained severe depression of A in saplings under conditions of relatively high leaf temperature and vapor pressure deficit. Model simulations of A depression through bimodal stomatal closure were corroborated by direct observations of stomatal aperture distribution using Suzuki’s Micro-Printing method; these demonstrated that there was a real bimodal frequency distribution of stomatal apertures. Although there was a heterogeneous distribution of stomatal apertures both within and among patches, induction of heterogeneity in intercellular CO2 concentration among patches, and hence severe depression of A, resulted only from bimodal stomatal closure among patches (rather than within patches).  相似文献   

18.
利用光学显微镜和扫描电子显微镜,观察了新疆委陵菜属5组不同花柱组10种4变种植物叶表皮的微形态特征,测量统计叶表皮毛的类型、表皮细胞的形状及大小、气孔器的分布及类型、气孔的形状、大小、密度及指数、气孔外拱盖形态及其纹饰等指标。结果显示:新疆委陵菜属10种4变种植物叶的下表皮均有气孔器的分布,形状为长椭圆形、椭圆形、宽椭圆形和近圆形;气孔器的类型多为无规则四细胞型、无规则型、围绕型和辐射型;表皮毛的类型为针状毛、带状柔毛和腺毛;表皮细胞的形状分为不规则形和多边形2种类型。研究表明,新疆委陵菜属植物表皮毛特征、叶片表皮细胞的形状、垂周壁式样、气孔器的形状类型、气孔密度指数及外围蜡质纹饰等存在差异,对属以下等级的划分有重要价值,可作为物种分类及鉴别的依据,同时也为本属一些分类群间的系统关系的探讨提供佐证。  相似文献   

19.
Pinus species show remarkable ontogenetic differences in needle morphology (heterophylly) between juvenile and adult vegetative phases. This developmental shift may play an adaptative role in their success under diverse habitats. As a first step to know the functional differences between each vegetative phase, we compared water loss through the cuticles of juvenile and adult needles of 21-month-old nursery-grown seedlings of nine hard pine species. Cuticular transpiration (CT), calculated after complete stomatal closure, was obtained by leaf-drying curves, and was related to leaf, ontogenetic and climatic parameters. The rate of cuticular transpiration (RCT) between juvenile and adult needles differed across pine species, and in particular segregated the Mediterranean species Pinus canariensis and P. halepensis, from the Eurasian P. uncinata and introduced species P. radiata. For these species, RCT was always higher in juvenile needles. The different leaf and ontogenic parameters studied were correlated with the variation in RCT among the nine pine species. We discuss this relationship in the light of the species ecology. Besides their possible adaptive interpretation, these results suggest an underlying need to consider the ontogenetic heterophylly when assessing functional traits in hard pine seedlings, in particular those traits that govern water relations.  相似文献   

20.
The subdivision of theAnthemideae into two subtribes purely on the grounds of the presence or absence of receptacular paleae can no longer be maintained. Anatomical data may serve as a basis for a more adequate division of the tribe. This survey of the stomatal apparatus types within theAnthemideae is based on the investigation of 29 species from 15 genera and the evaluation of literature data: Anomocytic stomatal apparatus occur in all species examined, anisocytic at least in all genera investigated by us. We even found representatives of some rare types, such as polo-, helico- or hemiparacytic apparatus, in nearly all species. Diacytic types were not found inOtanthus, Artemisia, Tripleurospermum, Tanacetum corymbosum, and they also appear to be lacking inSantolina andEriocephalus. Paracytic stomatal apparatus and a new type which links paracytic with actinocytic and cyclocytic was discovered inOtanthus maritimus andArtemisia stellerana.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号