共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in facioscapulohumeral muscular dystrophy 总被引:3,自引:0,他引:3
下载免费PDF全文

Lemmers RJ Van Overveld PG Sandkuijl LA Vrieling H Padberg GW Frants RR van der Maarel SM 《American journal of human genetics》2004,75(1):44-53
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD1A) is associated with contractions of the polymorphic D4Z4 repeat on chromosome 4qter. Almost half of new FSHD mutations occur postfertilization, resulting in somatic mosaicism for D4Z4. Detailed D4Z4 analysis of 11 mosaic individuals with FSHD revealed a mosaic mixture of a contracted FSHD-sized allele and the unchanged ancestral allele in 8 cases, which is suggestive of a mitotic gene conversion without crossover. However, in 3 cases, the D4Z4 rearrangement resulted in two different-sized D4Z4 repeats, indicative of a gene conversion with crossover. In all cases, DNA markers proximal and distal to D4Z4 showed no allelic exchanges, suggesting that all rearrangements were intrachromosomal. We propose that D4Z4 rearrangements occur via a synthesis-dependent strand annealing model that relatively frequently allows for crossovers. Furthermore, the distribution of different cell populations in mosaic patients with FSHD suggests that mosaicism here results from D4Z4 rearrangements occurring during the first few zygotic cell divisions after fertilization. 相似文献
2.
Jannine Clapp Daniel J Bolland Jane E Hewitt 《Briefings in Functional Genomics and Prot》2003,2(3):213-223
The genomic basis of facioscapulohumeral muscular dystrophy (FSHD) is of considerable interest because of the unique nature of the molecular mutation, which is a deletion within a large, complex DNA tandem array (D4Z4). This repeat maps within 30 kb of the 4q telomere. Although D4Z4 repeat units each contain an open reading frame that could encode a homeodomain protein, there is no evidence that the repeat is transcribed, and the underlying disease mechanism probably involves a position effect. A recent study has identified a protein complex bound to D4Z4 that contains YY1 and HMGB2, implicating a role for D4Z4 as a repressor. The 4q telomere has two variants, 4qA and 4qB. Although these alleles are present at almost equal frequencies in the general population, FSHD is associated only with the 4qA allele and never with 4qB. This suggests a functional difference between the telomere variants, either in predisposition to deletions within D4Z4 or in the pathological consequence of the deletion. Comparative mapping studies of the FSHD region in primates, mouse and Fugu rubripes have given insights into the evolutionary history of the D4Z4 repeat and of 4qter, although as yet they have not provided any solutions to the FSHD puzzle. 相似文献
3.
K D Mathews K A Mills E P Bosch V V Ionasescu K R Wiles K H Buetow J C Murray 《American journal of human genetics》1992,51(2):428-431
Fasioscapulohumeral muscular dystrophy (FSHD) has recently been localized to 4q35. We have studied four families with FSHD. Linkage to the 4q35 probes D4S163, D4S139, and D4S171 was confirmed. We found no recombinants helpful in detailed localization of the FSHD gene. Two of our families include males with a rapidly progressive muscle disease that had been diagnosed, on the basis of clinical features, as Duchenne muscular dystrophy. One of these males is available for linkage study and shares the haplotype of his FSHD-affected aunt and cousin. 相似文献
4.
Regional mapping of facioscapulohumeral muscular dystrophy gene on 4q35: Combined analysis of an international consortium
下载免费PDF全文

Mansoor Sarfarazi Cisca Wijmenga Meena Upadhyaya Barbara Weiffenbach Craig Hyser Kathy Mathews Jeffrey Murray John Gilbert Margaret Pericak-Vance Peter Lunt Rune R. Frants Stephen Jacobsen Peter S. Harper George W. Padberg 《American journal of human genetics》1992,51(2):396-403
Members of an international consortium for linkage analysis of the facioscapulohumeral muscular dystrophy (FSHD) gene have pooled data for joint analyses, in an attempt to determine the precise location of the FSHD gene and the order of four DNA markers on 4q35 region. Six laboratories determined a total of 3,078 genotypes in 65 families, consisting of a total of 504 affected subjects and 559 unaffected subjects. For each marker, a mean of 648 meioses were informative. D4S139 and D4S163 were identified as the closest linked markers to the FSHD locus, with 99% upper confidence intervals of recombination fractions of .08 and .10, respectively. We have used the CRI-MAP program to construct the most likely order of cen-D4S171-F11-D4S163-D4S139-FSHD-tel, with favorable odds of 10(8)-10(114) over all other orders except that in which F11 and D4S171 are reversed, for which the odds ratio was 191:1. With this order, the genetic map of this region extends 25.5 cM in males and 13.8 cM in females (averaging 19.5 cM for sexes combined); the sex difference was statistically significant (P = .0013). Comparison between families for the two-point and multipoint lod scores involving FSHD showed no evidence for heterogeneity of this disorder. However, after the completion of this analysis, one large family which might show heterogeneity was identified. In view of this and the fact that all of the linked markers reside on the same side of the FSHD locus, the clinical application of these markers is not recommended at this time. 相似文献
5.
The mapping of chromosome 4q markers in relation to facioscapulohumeral muscular dystrophy (FSHD).
下载免费PDF全文

M Upadhyaya P Lunt M Sarfarazi W Broadhead J Farnham P S Harper 《American journal of human genetics》1992,51(2):404-410
The Basque population is one of the oldest populations of Europe. It has been suggested that the Basques arose from a population established in western Europe during the late Paleolithic Age. The Basque language (Euskera) is a supposedly pre-Indo-European language that originates from the first settlers of Europe. The variable distribution of the major cystic fibrosis (CF) mutation (delta F508 deletion) in Europe, with higher frequencies of the mutation in northern Europe and lower frequencies in southern Europe, has suggested that the delta F508 mutation was spread by early farmers migrating from the Middle East during the Neolithic period. We have studied 45 CF families from the Basque Country, where the incidence of CF is approximately 1/4,500. The birthplaces of the parents and grandparents have been traced and are distributed according to their origin as Basque or Mixed Basque. The frequency of the delta F508 mutation in the chromosomes of Basque origin is 87%, compared with 58% in those of Mixed Basque origin. The analysis of haplotypes, both with markers closely linked to the CF gene and with intragenic markers, suggests that the delta F508 mutation was not spread by the Indo-European invasions but was already present in Europe more than 10,000 years ago, during the Paleolithic period. 相似文献
6.
7.
Cisca Wijmenga SaraT. Winokur GeorgeW. Padberg Mette I. Skraastad Michael R. Altherr John J. Wasmuth Jeffrey C. Murray Marten H. Hofker Rune R. Frants 《Human genetics》1993,92(2):198-203
Facioscapulohumeral muscular dystrophy (FSHD) is a relatively common autosomal dominant neuromuscular disorder. The gene for FSHD has recently been assigned to chromosome 4q35. Although abnormal mitochondrial and biochemical changes have been observed in FSHD, the molecular defect is unknown. In addition to the FSHD gene, the human muscle adenine nucleotide translocator gene (ANT1) is located on chromosome 4. Interestingly, biochemical studies recently showed a possible defect of ANT1. In order to evaluate the potential role of ANT1 in the etiology of FSHD, the human ANT1 gene was isolated by cosmid cloning and localized to 4q35, in the region containing the FSHD gene. However, in situ hybridization and physical mapping of somatic cell hybrids localized the ANT1 gene proximal to the FSHD gene. In addition, a polymorphic CA-repeat 5 kb upsstream of the ANT1 gene was used as a marker in FSHD and Centre d'Etude du Polymorphisme Humain families to perform linkage analysis. These data together exclude ANT1 as the primary candidate gene for FSHD. The most likely order of the loci on chromosome 4q35 is cen-ANT1-D4S171-F11-D4S187-D4S163-D4S139-FSHD-tel. 相似文献
8.
Genetic linkage map of facioscapulohumeral muscular dystrophy and five polymorphic loci on chromosome 4q35-qter
下载免费PDF全文

C. Wijmenga L. A. Sandkuijl P. Moerer N. van der Boorn S. E. Bodrug P. N. Ray O. F. Brouwer J. C. Murray G. J. B. van Ommen G. W. Padberg R. R. Frants 《American journal of human genetics》1992,51(2):411-415
A genetic map of five polymorphic markers in the area of the facioscapulohumeral muscular dystrophy (FSHD) gene on chromosome 4q35-qter has been constructed. With these five markers, a number of recombinants have been identified that allow ordering of the marker and the disease loci. The most likely locus order and the relative position of the FSHD gene supported by the recombinants is centromere-D4S171-F11-D4S187-D4S163-D4S139-FS HD-telomere. However, at least one recombination event appears to be inconsistent with this order and suggests a location of FSHD proximal to D4S139. 相似文献
9.
S Cacurri N Piazzo G Deidda E Vigneti G Galluzzi L Colantoni B Merico E Ricci L Felicetti 《American journal of human genetics》1998,63(1):181-190
Physical mapping and in situ hybridization experiments have shown that a duplicated locus with a structural organization similar to that of the 4q35 locus implicated in facioscapulohumeral muscular dystrophy is present in the subtelomeric portion of 10q. We performed sequence analysis of the p13E-11 probe and of the adjacent KpnI tandem-repeat unit derived from a 10qter cosmid clone and compared our results with those published, by other laboratories, for the 4q35 region. We found that the sequence homology range is 98%-100% and confirmed that the only difference that can be exploited for differentiation of the 10qter from the 4q35 alleles is the presence of an additional BlnI site within the 10qter KpnI repeat unit. In addition, we observed that the high degree of sequence homology does facilitate interchromosomal exchanges resulting in displacement of the whole set of BlnI-resistant or BlnI-sensitive KpnI repeats from one chromosome to the other. However, partial translocations escape detection if the latter simply relies on the hybridization pattern from double digestion with EcoRI/BlnI and with p13E-11 as a probe. We discovered that the restriction enzyme Tru9I cuts at both ends of the array of KpnI repeats of different chromosomal origins and allows the use of cloned KpnI sequences as a probe by eliminating other spurious fragments. This approach coupled with BlnI digestion permitted us to investigate the structural organization of BlnI-resistant and BlnI-sensitive units within translocated chromosomes of 4q35 and 10q26 origin. A priori, the possibility that partial translocations could play a role in the molecular mechanism of the disease cannot be excluded. 相似文献
10.
Cisca Wijmenga George W. Padberg Petra Moerer Joop Wiegant Linda Liem Oebele F. Brouwer Eric C. B. Milner James L. Weber GertJan B. van Ommen Lodewijk A. Sandkuyl Rune R. Frants 《Genomics》1991,9(4)
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromosome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction θ of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability. 相似文献
11.
Linkage analyses of five chromosome 4 markers localizes the facioscapulohumeral muscular dystrophy (FSHD) gene to distal 4q35
下载免费PDF全文

Barbara Weiffenbach Rebecca Bagley Kathleen Falls Craig Hyser Diane Storvick Stephen J. Jacobsen Paul Schultz Jerry Mendell K. Willems van Dijk Eric C. B. Milner Robert Griggs 《American journal of human genetics》1992,51(2):416-423
The genetic locus for facioscapulohumeral muscular dystrophy (FSHD) has been mapped to chromosome 4. We have examined linkage to five chromosome 4q DNA markers in 22 multigenerational FSHD families. Multipoint linkage analyses of the segregation of four markers in the FSHD families and in 40 multigenerational mapping families from the Centre d'Etude du Polymorphisme Humaine enabled these loci and FSHD to be placed in the following order: cen-D4S171-factor XI-D4S163-D4S139-FSHD-qter. One interval, D4S171-FSHD, showed significant sex-specific differences in recombination. Homogeneity tests supported linkage of FSHD to these 4q DNA markers in all of the families we studied. The position of FSHD is consistent with that generated by other groups as members of an international FSHD consortium. 相似文献
12.
Jutta Köhler Barbara Rupilius Michael Otto Klaus Bathke M. C. Koch 《Human genetics》1996,98(4):485-490
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominantly inherited neuromuscular disorder affecting facial and shoulder girdle muscles with subsequent progression to the pelvic girdle and lower extremities. The major gene involved has been localized to chromosome 4q35 (FSHD1A). The 4q35 DNA marker p13E-11 (D4F104S1) detects a de novo EcoRI DNA rearrangement of < 30 kb in isolated and familial cases. The intrafamilial size of the fragment is constant, inversely correlated with the severity, and directly correlated with the age of onset of the condition. There has been evidence of parental mosaicism in FSHD1A for the D4F104S1 locus. Four female and three male clinically unaffected parents have been described to be carriers of EcoRI fragments of the same size as their affected offspring, but with a markedly less intensive hybridization signal (semi-quantitative evidence). In our total sample of 42 FSHD1A families, we found semi-quantitative evidence of parental D4F104S1 mosaicism in 11 families (EcoRI fragment size range: 12–27 kb). On analysis with adjacent 4q35 probes (D4S163, D4S139), additional qualitative evidence of germline mosaicism could be obtained in two families. In our mosaic families and in the families reported in the literature, a female predominance of mosaicism carriers (13 females versus 5 males) could be noted. In our sample, mosaicism was observed in multigeneration families, in families with isolated cases, and in families with two and three affected children from seemingly unaffected parents. A short EcoRI fragment once having emerged in a mosaicism carrier was found to be transmitted autosomal dominantly to subsequent generations. Of all reported sporadic patients, 19% have a mosaic parent. Finding evidence of parental mosaicism in all our families with more than one affected child of seemingly unaffected parents suggests that there is no autosomal recessively inherited form of FSHD1A. Received: 5 March 1996 / Revised: 14 May 1996 相似文献
13.
Buzhov BT Lemmers RJ Tournev I Dikova C Kremensky I Petrova J Frants RR van der Maarel SM 《Human genetics》2005,116(4):262-266
Facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat on chromosome 4q. Genetic confirmation of the clinical diagnosis of FSHD is complicated by the presence of a homologous repeat on chromosome 10q and the frequent repeat exchanges between both chromosomes. Here, we describe the genetic evaluation of an FSHD patient with a complex D4Z4 allele constitution in which the potentially pathogenic allele seemingly resides on chromosome 10, despite FSHD being exclusively linked to chromosome 4. Complementary allele typing and segregation analysis confirmed the clinical diagnosis of FSHD by revealing the chromosome 4 origin of the pathogenic allele in the presence of two exchanged repeat arrays, one on chromosome 4 and one on chromosome 10, an allele constitution that cannot be identified by conventional DNA diagnosis. 相似文献
14.
Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy 总被引:3,自引:0,他引:3
下载免费PDF全文

Lemmers RJ Wohlgemuth M Frants RR Padberg GW Morava E van der Maarel SM 《American journal of human genetics》2004,75(6):1124-1130
Facioscapulohumeral muscular dystrophy (FSHD) is associated with contractions of the D4Z4 repeat in the subtelomere of chromosome 4q. Two allelic variants of chromosome 4q (4qA and 4qB) exist in the region distal to D4Z4. Although both variants are almost equally frequent in the population, FSHD is associated exclusively with the 4qA allele. We identified three families with FSHD in which each proband carries two FSHD-sized alleles and is heterozygous for the 4qA/4qB polymorphism. Segregation analysis demonstrated that FSHD-sized 4qB alleles are not associated with disease, since these were present in unaffected family members. Thus, in addition to a contraction of D4Z4, additional cis-acting elements on 4qA may be required for the development of FSHD. Alternatively, 4qB subtelomeres may contain elements that prevent FSHD pathogenesis. 相似文献
15.
16.
Genetic and physical mapping on chromosome 4 narrows the localization of the gene for facioscapulohumeral muscular dystrophy (FSHD).
下载免费PDF全文

K A Mills K H Buetow Y Xu T M Ritty K D Mathews S E Bodrug C Wijmenga I Balazs J C Murray 《American journal of human genetics》1992,51(2):432-439
We have used a combination of classical RFLPs and PCR-based polymorphisms including CA repeats and single-strand conformation polymorphisms to generate a fine-structure genetic map of the distal long arm of chromosome 4q. This map is now genetically linked to the pre-existing anchor map of 4pter-4q31 and generates, for the first time, a complete linkage map of this chromosome. The map consists of 32 anchor loci placed with odds of greater than 1,000:1. The high-resolution map in the cytogenetic region surrounding 4q35 provides the order 4cen-D4S171-F11-D4S187-D4S163-D4S139-4q ter. When we used somatic cell hybrids from a t(X;4)(p21;q35) translocation, these five markers fell into three groups consistent with the genetic map-D4S171 and F11 in 4pter-4q35, D4S163 and D4S139 in 4q35-4qter, and D4S187 as a junction fragment between these two regions. These markers are in tight linkage to the gene for facioscapulo-humeral muscular dystrophy (FSHD) mapped to this region by several collaborating investigators and provide a framework for further detailed analysis of this region. 相似文献
17.
A radiation hybrid map of 15 loci on the distal long arm of chromosome 4, the region containing the gene responsible for facioscapulohumeral muscular dystrophy (FSHD). 总被引:2,自引:0,他引:2
下载免费PDF全文

S T Winokur B Schutte B Weiffenbach S S Washington D McElligott A Chakravarti J H Wasmuth M R Altherr 《American journal of human genetics》1993,53(4):874-880
A physical map of 4q35 was constructed through radiation hybrid analysis of 134 clones generated from the cell line HHW416, a chromosome 4-only human-hamster somatic cell hybrid. This subtelomeric region contains the as-yet-unidentified gene responsible for facioscapulohumeral muscular dystrophy. The most likely order of 15 loci within 4q35 was determined. The loci ordered on this radiation hybrid map include both genes and polymorphic loci, as well as monomorphic loci which cannot be placed on a genetic linkage map. The physical distance spanning these loci was estimated to be approximately 4.5 Mb, by using a kilobase/centiray conversion factor derived from 4p16.3 marker analysis through the same set of radiation hybrids. The comparison of this physical map to establish genetic maps suggests that this region is smaller than initially estimated and that recombination rates are increased near the telomere. 相似文献
18.
19.
Molecular analysis of the Duchenne muscular dystrophy region using pulsed field gel electrophoresis 总被引:34,自引:0,他引:34
Genetic and molecular studies show that the Duchenne muscular dystrophy (DMD) locus at Xp21 is large and complex. We have analyzed this region using pulsed field gel electrophoresis (PFGE) and have determined physical distances between Xp21 probes. The sum of the sizes of the Sfil restriction fragments detected by these probes is greater than 4000 kb. The deletion endpoints in two DMD patients were detected by observing changes in these restriction fragments. In addition, the Xp21 breakpoint for the X;1 translocation in an affected female was mapped. These results demonstrate the applicability of PFGE for analysis of Xp21, and should facilitate the mapping of other translocations and deletions in this region, some of which lead to glycerol kinase deficiency and adrenal hypoplasia as well as DMD. 相似文献
20.
Sun CY van Koningsbruggen S Long SW Straasheijm K Klooster R Jones TI Bellini M Levesque L Brieher WM van der Maarel SM Jones PL 《Journal of molecular biology》2011,411(2):397-416
FSHD region gene 1 (FRG1) is a dynamic nuclear and cytoplasmic protein that, in skeletal muscle, shows additional localization to the sarcomere. Maintaining appropriate levels of FRG1 protein is critical for muscular and vascular development in vertebrates; however, its precise molecular function is unknown. This study investigates the molecular functions of human FRG1, along with mouse FRG1 and Xenopus frg1, using molecular, biochemical, and cellular-biological approaches, to provide further insight into its roles in vertebrate development. The nuclear fraction of the endogenous FRG1 is localized in nucleoli, Cajal bodies, and actively transcribed chromatin; however, contrary to overexpressed FRG1, the endogenous FRG1 is not associated with nuclear speckles. We characterize the nuclear and nucleolar import of FRG1, the potential effect of phosphorylation, and its interaction with the importin karyopherin α2. Consistent with a role in RNA biogenesis, human FRG1 is associated with mRNA in vivo and invitro, interacts directly with TAP (Tip-associated protein; the major mRNA export receptor), and is a dynamic nuclear-cytoplasmic shuttling protein supporting a function for FRG1 in mRNA transport. Biochemically, we characterize FRG1 actin binding activity and show that the cytoplasmic pool of FRG1 is dependent on an intact actin cytoskeleton for its localization. These data provide the first biochemical activities (actin binding and RNA binding) for human FRG1 and the characterization of the endogenous human FRG1, together indicating that FRG1 is involved in multiple aspects of RNA biogenesis, including mRNA transport and, potentially, cytoplasmic mRNA localization. 相似文献