首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syncatalytic inactivation of pig heart cytoplasmic aspartate aminotransferase by β-chloro-[U-14C]L-alanine resulted in the incorporation of radioactivity corresponding to one mole of the label per mole of the monomeric unit of the enzyme. A borohydride-reduced and then carboxymethylated preparation of the labeled enzyme was digested by trypsin. A radioactive peptide was isolated and found to contain a covalently linked pyridoxyl derivative which absorbed at 325 nm. The amino acid sequence of this peptide was Tyr-Phe-Val-Ser-Glu-Gly-Phe -Glu-Leu-Phe-Cys-Ala-Gln-Ser-Phe-Ser-Lys-Asn-Phe-Gly-Leu-Tyr-Asn-Glu-Arg. In the peptide the phosphopyridoxyl group seems to be covalently bound via alanyl moiety derived from β-chloro-L-alanine, the β-carbon atom of which is covalently linked to the ?-nitrogen atom of the lysyl residue(Lys). From a comparison with the amino acid composition of the phosphopyridoxyl peptide isolated from the tryptic digest of a borohydride-reduced holoenzyme, it was concluded that the modified lysul residue was identical to that involved in binding pyridoxal phosphate to the apoenzyme.  相似文献   

2.
Formate-induced inactivation of pig heart mitochondrial aspartate aminotransferase by beta-chloro-L-alanine resulted in the modification of the epsilon-amino group of the lysyl residue which is involved in the formation of an aldimine bond with 4-formyl group of the coenzyme, pyridoxal 5'-phosphate. The tryptic peptide isolated from the labeled site of the enzyme was composed of 25 residues and exhibited positive circular dichroism at 325 and 254 nm where the pyridoxyl chromophore of the labeled site peptide absorbs, while the phosphopyridoxyl peptide isolated from the boro-hydride-reduced enzyme did not show any ellipticity in this spectral region. Its comparison with the analogous tryptic peptide from the labeled site of the cytosolic isoenzyme revealed a high degree of homology in their primary structures as well as in spectral properties. Structural analysis of the labeled site peptide and mechanistic consideration of the labeling process indicated that with both isoenzymes the phosphopyridoxyl group is covalently bound to the alpha amino group of the alanyl moiety derived from beta-chloro-L-alanine, the beta carbon of which is covalently linked to the epsilon-amino group of the lysyl residue.  相似文献   

3.
The primary structure of mitochondrial aspartate aminotransferase from chicken is reported. The enzyme is a dimer of identical subunits. Each subunit contains 401 amino acid residues; the calculated subunit molecular weight of the apoform is 44,866. The degree of sequence identity with the homologous cytosolic isoenzyme from chicken is 46%. A comparison of the primary structures of the mitochondrial and the cytosolic isoenzyme from pig and chicken shows that 40% of all residues are invariant. The degree of interspecies sequence identity both of the mitochondrial and the cytosolic isoenzyme from chicken and pig (86% and 83%, respectively) markedly exceeds that of the intraspecies identity between mitochondrial and cytosolic aspartate aminotransferase in chicken (46%) or in pig (48%). Based on these values, the duplication of the aspartate aminotransferase ancestral gene is estimated to have occurred approximately 1000 million years ago, i.e. at the time of the emergence of eukaryotic cells. By sequence comparison it is possible to identify amino acid residues and segments of the polypeptide chain that have been conserved specifically in the mitochondrial isoenzyme during phylogenetic evolution. These segments comprise about a third of the total polypeptide chain and appear to cluster in a certain surface region. The cluster carries an excess of positively charged residues which exceeds the overall charge difference between the cytosolic (pI approximately 6) and the mitochondrial isoenzyme (pI approximately 9).  相似文献   

4.
1. The cytosolic aspartate aminotransferase was purified from human liver. 2. The isoenzyme contains four cysteine residues, only one of which reacts with 5,5'-dithiobis-(2-nitrobenzoic acid) in the absence of denaturing agents. 3. The amino acid sequence of the isoenzyme is reported, as determined from peptides produced by digestion with trypsin and with CNBr, and from sub-digestion of some of these peptides with Staphylococcus aureus V8 proteinase. 4. The isoenzyme shares 48% identity of amino acid sequence with the mitochondrial form from human heart. 5. Comparisons of the amino acid sequences of all known mammalian cytosolic aspartate aminotransferases and of the same set of mitochondrial isoenzymes are reported. The results indicate that the cytosolic isoenzymes have evolved at about 1.3 times the rate of the mitochondrial forms. 6. The time elapsed since the cytosolic and mitochondrial isoenzymes diverged from a common ancestral protein is estimated to be 860 x 10(6) years. 7. Experimental details and confirmatory data for the results presented here are given in a supplementary paper that has been deposited as a Supplementary Publication SUP 50158 (25 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1990) 265, 5.  相似文献   

5.
A method for the purification of mitochondrial isoenzyme of sheep liver aspartate aminotransferase (EC 2.6.1.1) is described. The final preparation is homogeneous by ultracentrifuge analyses and polyacrylamide-gel electrophoresis and has a high specific activity (182 units/mg). The molecular weight determined by sedimentation equilibrium is 87,100 +/- 680. The amino acid composition is presented; it is similar to that of other mitochondrial isoenzymes, but with a higher content of tyrosine and threonine. Subforms have been detected. On isoelectric focusing a broad band was obtained, with pI 9.14. The properties of the mitochondrial aspartate aminotransferase are compared with those of the cytoplasmic isoenzyme. The Km for L-aspartate and 2-oxoglutarate for the cytoplasmic enzyme were 2.96 +/- 0.20 mM and 0.093 +/- 0.010 mM respectively; the corresponding values for the mitochondrial form were 0.40 +/- 0.12 mM and 0.98 +/- 0.14 mM. Cytoplasmic aspartate aminotransferase showed substrate inhibition by concentrations of 2-oxoglutarate above 0.25 mM in the presence of aspartate up to 2mM. The mitochondrial isoenzyme was not inhibited in this way. Pi at pH 7.4 inhibited cytoplasmic holoenzyme activity by up to about 60% and mitochondrial holoenzyme activity up to 40%. The apparent dissociation constants for pyridoxal 5'-phosphate were 0.23 micrometer (cytoplasmic) and 0.062 micrometer (mitochondrial) and for pyridoxamine 5'-phosphate they were 70 micrometer (cytoplasmic) and 40 micrometer (mitochondrial). Pi competitively inhibited coenzyme binding to the apoenzymes; the inhibition constants at 37 degree C were 32 micrometer for the cytoplasmic isoenzyme and 19.5 micrometer for the mitochondrial form.  相似文献   

6.
1. A procedure for the purification of the cytoplasmic isoenzyme of aspartate aminotransferase from sheep liver is described. 2. The purified isoenzyme shows a single component in the ultracentrifuge at pH7.6 and forms a single protein band on agar-gel electrophoresis at pH6.3 or 8.6, as well as when stained for protein or activity after polyacrylamide-gel or cellulose acetate electrophoresis at pH8.8. 3. Immunoelectrophoresis on agar gel yields only one precipitin arc associated with the protein band, with rabbit antiserum to the purified isoenzyme. By immunodiffusion, cross-reaction was detected between the cytoplasmic isoenzymes from sheep liver and pig heart, but not between the cytoplasmic and mitochondrial sheep liver isoenzymes. 4. The s(20,w) of the enzyme is 5.69S and the molecular weight determined by sedimentation equilibrium is 88900; 19313 molecules of oxaloacetate were formed/min per molecule of enzyme at pH7.4 and 25 degrees C. 5. The amino acid composition of the isoenzyme is presented. It has about 790 residues per molecule. 6. The holoenzyme has a maximum of absorption at 362nm at pH7.6 and 25 degrees C. 7. A value of 2.1 was found for the coenzyme/enzyme molar ratio. 8. The purified enzyme revealed two bands of activity on polyacrylamide-gel electrophoresis at pH7.4 and an extra, faster, band in some circumstances. These bands occurred even when dithiothreitol was present throughout the isolation procedure. 9. Three main bands were obtained by electrofocusing on polyacrylamide plates with pI values 5.75, 5.56 and 5.35. 10. Structural similarities with cytoplasmic isoenzymes from other organs are discussed.  相似文献   

7.
The aspartate:2-oxoglutarate aminotransferase from the protozoon Trichomonas vaginalis exists as a mixture of sub-forms of identical Mr and amino acid composition, and of similar catalytic properties. The amino acid composition closely resembles that of aspartate aminotransferase from prokaryotic and vertebrate sources. Some molecular and catalytic properties of the T. vaginalis aspartate aminotransferase are compared with those of the cytoplasmic pig heart enzyme. A major difference is in the ability of the trichomonal enzyme to transaminate aromatic amino acids and 2-oxo acids. A range of inhibitors have been used to compare the active-site regions of the T. vaginalis and cytoplasmic pig heart aspartate aminotransferases.  相似文献   

8.
The complete amino acid sequence of the mitochondrial aspartate aminotransferase from pig heart was determined by analyses of the fragments obtained from tryptic digestion and cyanogen bromide treatment of the protein. The sequence analyzer was useful for establishing the primary structure of the N-terminal portion of the whole protein. There are 401 amino acid residues in the molecule. The sequence was compared with that of the cytoplasmic isozyme, showing 48% homology.  相似文献   

9.
Following reduction with NaBH4, carboxymethylation and cleavage with cyanogen bromide, a peptide of thirty-seven amino acid residues containing N?-pyridoxyllysine (coenzyme binding lysine) was isolated from the mitochondrial aspartate aminotransferase of pig heart by Sephadex G-75 column chromatography and then preparative polyacrylamide gel electrophoresis. The primary structure of this peptide was determined to be Ala-Tyr-Gln-Gly-Phe-Ala-Ser-Gly-Asp-Gly-Asn-Lys-Asp-Ala-Trp-Ala-Val-Arg-His-Phe-Ile-Glu-Gln-Gly-Ile-Asn-Val-Cys-Leu-Cys-Gln-Ser-Tyr-Ala-(Pxy) Lys-Asn-Met. Its structure showed a high degree of homology with the corresponding part of the cytoplasmic isozyme.  相似文献   

10.
The complete amino acid sequence of the mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) from human heart has been determined based mainly on analysis of peptides obtained by digestion with trypsin and by chemical cleavage with cyanogen bromide. Comparison of the sequence with those of the isotopic isoenzymes from pig, rat and chicken showed 27, 29 and 55 differences, respectively, out of a total of 401 amino acid residues. Evidence for structural microheterogeneity at position 317 has also been obtained.  相似文献   

11.
The complete amino acid sequence of rat liver cytosolic alanine aminotransferase (EC 2.6.1.2) is presented. Two primary sets of overlapping fragments were obtained by cleavage of the pyridylethylated protein at methionyl and lysyl bonds with cyanogen bromide and Achromobacter protease I, respectively. The protein was found to be acetylated at the amino terminus and contained 495 amino acid residues. The molecular weight of the subunit was calculated to be 55,018 which was in good agreement with a molecular weight of 55,000 determined by SDS-PAGE and also indicated that the active enzyme with a molecular weight of 114,000 was a homodimer composed of two identical subunits. No highly homologous sequence was found in protein sequence databases except for a 20-residue sequence around the pyridoxal 5'-phosphate binding site of the pig heart enzyme [Tanase, S., Kojima, H., & Morino, Y. (1979) Biochemistry 18, 3002-3007], which was almost identical with that of residues 303-322 of the rat liver enzyme. In spite of rather low homology scores, rat alanine aminotransferase is clearly homologous to those of other aminotransferases from the same species, e.g., cytosolic tyrosine aminotransferase (24.7% identity), cytosolic aspartate aminotransferase (17.0%), and mitochondrial aspartate aminotransferase (16.0%). Most of the crucial amino acid residues hydrogen-bonding to pyridoxal 5'-phosphate identified in aspartate aminotransferase by X-ray crystallography are conserved in alanine aminotransferase. This suggests that the topology of secondary structures characteristic in the large domain of other alpha-aminotransferases with known tertiary structure may also be conserved in alanine aminotransferase.  相似文献   

12.
The nucleotide sequence of ornithine aminotransferase mRNA from rat liver, including the entire coding and 3' untranslated regions, was determined from two overlapping cDNA clones. The mRNA encodes a precursor polypeptide of 439 amino acid residues with a molecular weight of 48,332. The deduced amino acid composition of the proposed mature enzyme sequence (residues 35 through 439) was in good agreement with that reported for the purified protein. The amino-terminal segment of the precursor corresponding to residues 1 through 34 has an overall positive charge, containing 6 basic residues and only a single acidic residue, and is postulated to be the mitochondrial leader sequence. The first 22 amino acid residues of the proposed leader sequences share 54% homology with the leader peptide of rat ornithine transcarbamylase precursor and more limited homology to the leader peptides of other nuclear-encoded mitochondrial matrix proteins. Homology was also observed between residues 286 through 362 ornithine aminotransferase precursor and a region containing the pyridoxyl phosphate binding domain of mitochondrial aspartate aminotransferase.  相似文献   

13.
A pyridoxal 5'-phosphate-containing peptide which contained 54 amino acid residues was isolated from chicken liver P-protein of the glycine cleavage system following reduction with NaB3H4, carboxymethylation, and proteolysis with lysylendopeptidase. Two peptides which comprise the two halves of the phosphopyridoxyl peptide were isolated from apo-P-protein. Sequence analysis of these three peptides provided the primary structure of the phosphopyridoxyl peptide and revealed that the cofactor is linked to Lys-35. The pyridoxal 5'-phosphate-binding site has the His-Lys(PLP)-X structure characteristic of known pyridoxal 5'-phosphate-dependent amino acid decarboxylases, tryptophan synthase, and serine hydroxymethyltransferase.  相似文献   

14.
Sulphydryl groups of mitochondrial aspartate aminotransferase from horse heart were titrated with 5,5'-dithiobis (2-nitrobenzoic acid). From analysis of peptic peptides, 378 amino acid residues (94.3% of the total) in the protein were identified. The results of amino acid sequence analysis are compared with those of cytosolic and mitochondrial aspartate aminotransferases from other sources.  相似文献   

15.
Amino acid sequences were determined for the six peptides from cyanogen bromide hydrolysis of cytoplasmic aspartate aminotransferase. These peptides accounted for 177 amino acid residues of the enzyme. Partial sequence of N-terminal peptide accounting for 212 amino acid residues of enzyme was also determined.  相似文献   

16.
The sequence of 40 amino acid residues at the amino terminus of mitochondrial aspartate aminotransferase from chicken heart differs in only 2 positions from the sequence of mitochondrial aminotransferase of pig heart. Close structural similarity had been suggested by previous data on syncatalytic sulfhydryl modifications (Gehring H., and Christen P. (1975) Biochem. Biophys. Res. Commun. 63, 441–447). The cytosolic aspartate aminotransferases from the same two species have now been found to differ considerably in the mode of their syncatalytic modifications. The data suggest that the cytosolic and mitochondrial aspartate aminotransferases might have evolved at different organelle-specific rates.  相似文献   

17.
The distribution of aspartate aminotransferase activity in yeasts was determined. The number of species of the enzyme in each yeast was determined by zymogram analysis. All the yeasts, except for the genus Saccharomyces, showed two or three activity bands on a zymogram. From among the strains, Rhodotorula minuta [corrected] and Torulopsis candida were selected for examination of the existence of yeast mitochondrial isoenzymes, because these strains showed two clear activity bands on the zymogram and contained a high amount of the enzyme. Only one aspartate aminotransferase was purified from T. candida: the component in the minor band on the zymogram was not an isoenzyme of aspartate aminotransferase. On the other hand, two aspartate aminotransferases were purified to homogeneity from R. minuta [corrected]. The components in the main and minor activity bands on the zymogram were identified as the mitochondrial and cytosolic isoenzymes, respectively, in a cell-fractionation experiment. The enzymatic properties of these isoenzymes were determined. The yeast mitochondrial isoenzyme resembled the animal mitochondrial isoenzymes in molecular weight (subunits and native form), absorption spectrum, and substrate specificity. The amino acid composition was closely similar to that of pig mitochondrial isoenzyme. Rabbit antibody against the yeast mitochondrial isoenzyme, however, did not form a precipitin band with the pig mitochondrial isoenzyme.  相似文献   

18.
A method has been developed which allows isolation of 0.3--0.5 g of mitochondrial aspartate aminotransferase in five days starting from 10 pig hearts; the method does not involve initial preparation of mitochondria. Mitochondrial malate dehydrogenase and the cytoplasmic aspartate aminotransferase may conveniently be recovered from side fractions. The product mitochondrial aspartate aminotransferase is homogeneous as judged by various electrophoretic techniques and by N-terminal analysis. Crystals of the enzyme have been obtained both from concentrated, essentially salt-free, solutions and from solutions of ammonium sulphate. The amino acid composition, N and C-terminal amino acid sequences and subunit molecular weight have been determined; these characteristic properties are compared with those of the cytoplasmic isozyme from the same source.  相似文献   

19.
Cytosolic and mitochondrial isozymes of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase [EC 2.6.1.1] ) were purified to homogeneity from rabbit liver. The rabbit liver isozymes were closely similar to the corresponding isozymes from other sources, including human heart, pig heart, chicken heart, and rat liver, in their molecular weights, absorption spectra, amino acid compositions, isoelectric points, and Michaelis constants for the substrates. The NH2-terminal amino acid sequences of rabbit liver isozymes were identified up to 30 residues, and showed some differences from those of the corresponding isozymes obtained from other animals so far studied.  相似文献   

20.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号