首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage TuIb required lipopolysaccharide in addition to the OmpC trimer as a receptor component. Both the fatty acid and polysaccharide regions of lipopolysaccharide were shown to participate in the receptor function. The roles of lipopolysaccharide and outer membrane proteins in the receptor function for T-even type bacteriophages are discussed.  相似文献   

2.
The roles of lipopolysaccharide and OmpC, a major outer membrane protein, in the receptor function for bacteriophage T4 were studied by using Escherichia coli K-12 strains having mutations in the ompC gene or in genes controlling different stages of lipopolysaccharide synthesis. The receptor activity for T4 was monitored by (i) T4 sensitivity of intact cells, (ii) phage inactivation activity of cell envelopes, and (iii) phage inactivation activity of specimens reconstituted from purified OmpC and lipopolysaccharide. It was found that (i) in the presence of the OmpC protein, the essential region of the lipopolysaccharide for the receptor activity was the core-lipid A region that includes the heptose region, whereas the glucose region was not necessarily required for the receptor function; (ii) the OmpC protein was not required at all when the distal end of the lipopolysaccharide was removed to expose a glucose residue at the distal end; and (iii) when cells lacked both the OmpC protein and the glucose region, they became extremely resistant to T4. Based on these findings, the roles of the OmpC protein and lipopolysaccharide in T4 infection are discussed.  相似文献   

3.
Escherichia coli strain JF694 contains a new major outer membrane protein which we have called protein E (J. Foulds, and T. Chai, J. Bacteriol. 133:1478-1483). Two new bacteriophages, TC45 and TC23, were isolated that require the presence of protein E in the outer membrane of host cells for growth. Both of these bacteriophages have a morphology similar to T-even bacteriophages but are distinct in properties such as plaque morphology, buoyant density, and burst size. Although strain JF694, containing protein E, adsorbs bacteriophage TC45 efficiently, cells killed with heat or chloroform are unable to inactivate this bacteriophage. Purified protein E either in the presence or absence of additional probable cofactors such as lipopolysaccharide was also unable to inactivate bacteriophage TC45. Both bacteriophages probably use protein E as at least part of their receptor but require, in addition, other outer membrane components or a specific orientation or organization of this protein in the outer membrane.  相似文献   

4.
The Escherichia coli K-12 outer membrane protein OmpA functions as the receptor for bacteriophage Ox2. We isolated a host range mutant of this phage which was able to grow on an Ox2-resistant ompA mutant producing an altered OmpA protein. From this mutant, Ox2h5, a second-step host range mutant was recovered which formed turbid plaques on a strain completely lacking the OmpA protein. From one of these mutants, Ox2h10, a third-step host range mutant, Ox2h12, was isolated which formed clear plaques on a strain missing the OmpA protein. Ox2h10 and Ox2h12 apparently were able to use both outer membrane proteins OmpA and OmpC as receptors. Whereas there two proteins are very different with respect to primary structures and functions, the OmpC protein is very closely related to another outer membrane protein, OmpF, which was not recognized by Ox2h10 or Ox2h12. An examination of the OmpC amino acid sequence, in the regions where it differs from that of OmpF, revealed that one region shares considerable homology with a region of the OmpA protein which most likely is required for phage Ox2 receptor activity.  相似文献   

5.
The T-even type Escherichia coli phage Ox2 recognizes the outer membrane protein OmpA as a receptor. This recognition is accomplished by the 266 residue protein 38, which is located at the free ends of the virion's long tail fibers. Host-range mutants had been isolated in three consecutive steps: Ox2----Ox2h5----Ox2h10----Ox2h12, with Ox2h12 recognizing the outer membrane protein OmpC efficiently and having lost some affinity for OmpA. Protein 38 consists, in comparison with these proteins of other phages, of two constant and one contiguous array of four hypervariable regions; the alterations leading to Ox2h12 were all found within the latter area. Starting with Ox2h12, further host-range mutants could be isolated on strains resistant to the respective phage: Ox2h12----h12h1----h12h1.1----h12h1.11----h12 h1.111. It was found that Ox2h12h1.1 (and a derivative of Ox2h10, h10h4) probably uses, instead of OmpA or OmpC, yet another outer membrane protein, designated OmpX. Ox2h12h1.11 was obtained on a strain lacking OmpA, -C and -X. This phage could not grow on a mutant of E. coli B, possessing a lipopolysaccharide (LPS) with a defective core oligosaccharide; Ox2h12h1.111 was obtained from this strain. It turned out that the latter two mutants used LPS as a receptor, most likely via its glucose residues. Selection for resistance to them in E. coli B (ompA+, ompC-, ompX-) yielded exclusively LPS mutants, and in another strain, possessing OmpA, C and X, the majority of resistant mutants were of this type. Isolated LPS inactivated the mutant phages very well and was inactive towards Ox2h12. By recombining the genes of mutant phages into the genome of parental phages it could be shown that the phenotypes were associated with gene 38. All mutant alterations (mostly single amino acid substitutions) were found within the hypervariable regions of protein 38. In particular, a substitution leading to Ox2h12h1.11 (Arg170----Ser) had occurred at the same site that led to Ox2h10 (His170----Arg), which binds to OmpC in addition to OmpA. It is concluded that not only can protein 38 gain the ability to switch from a protein to a carbohydrate as a receptor but can do so using the same domain of the polypeptide.  相似文献   

6.
Phage AR1, previously known to infectEscherichia coli O157:H7 with high specificity, was further characterized for its genetic properties. The phage DNA sequences including capsid genes and a putative -glucosyltransferase gene(-gt) have been deduced. These sequences are conservative but not identical to those of T4 phage. However, a nonessential gene,SegD, organized within the capsid gene cluster of T4 is missing in the corresponding region of AR1 genome, and this characteristic has not been observed among T-even related phages. The difference between AR1 and T4 was further exemplified by their distinct host ranges. Strains ofE. coli O157:H7 collected from different sources were permissive to AR1 but resistant to T4 that normally infects K-12 strains ofE. coli through contact with the outer membrane protein OmpC. Thus, the O157:H7 strains must have a varied OmpC. Indeed, the OmpC sequence of O157:H7 strains was proved to differ from that of K-12 strains by a total of 15 amino acid substitutions and two gaps (a five-residue deletion and a four-residue insertion). The OmpC molecules are relatively conserved across the gram-negative bacteria, and this is the first time OmpC divergence has been found within the sameE. coli species. Since OmpC is located in the outer membrane and its expression is regulated by environmental conditions, alteration of the structure in pathogenic O157:H7 strains may have biological significance.  相似文献   

7.
Summary The relative level of protein 2 expressed in the outer membrane of strains of Escherichia coli K-12 lysogenized with bacteriophage PA-2 was found to be influenced by both the growth temperature and lc + gene dosage. An increase in either of these parameters was accompanied by an increase in the level of protein 2 up to an apparent saturation level. Any increase in the amount of protein 2 was accompanied by a concomittant decrease in the amount of OmpF and OmpC porins. This inverse relationship led to the maintenance of an approximately constant protein mass per unit of peptidoglycan. Our results are discussed in light of recent genetic studies on the regulation of the OmpF and OmpC porins and can be explained through the competition of these three matrix proteins for a common export or insertion site.  相似文献   

8.
Yu SL  Ko KL  Chen CS  Chang YC  Syu WJ 《Journal of bacteriology》2000,182(21):5962-5968
Phage AR1 is similar to phage T4 in several essential genes but differs in host range. AR1 infects various isolates of Escherichia coli O157:H7 but does not infect K-12 strains that are commonly infected by T4. We report here the determinants that confer this infection specificity. In T-even phages, gp37 and gp38 are components of the tail fiber that are critical for phage-host interaction. The counterparts in AR1 may be similarly important and, therefore, were characterized. The AR1 gp37 has a sequence that differs totally from those of T2 and T4, except for a short stretch at the N terminus. The gp38 sequence, however, has some conservation between AR1 and T2 but not between AR1 and T4. The sequences that are most closely related to the AR1 gp37 and gp38 are those of phage Ac3 in the T2 family. To identify the AR1-specific receptor, E. coli O157:H7 was mutated by Tn10 insertion and selected for an AR1-resistant phenotype. A mutant so obtained has an insertion occurring at ompC that encodes an outer membrane porin. To confirm the role of OmpC in the AR1 infection, homologous replacement was used to create an ompC disruption mutant (RM). When RM was complemented with OmpC originated from an O157:H7 strain, but not from K-12, its AR1 susceptibility was fully restored. Our results suggest that the host specificity of AR1 is mediated at least in part through the OmpC molecule.  相似文献   

9.
Pure protein E, obtained after diethylaminoethyl-cellulose chromatography of ethylenediaminetetraacetic acid-Triton X-100-solubilized outer membrane proteins of Escherichia coli strain JF694, inactivated bacteriophage K3. Lipopolysaccharide enhanced bacteriophage inactivation. Antibody prepared against purified protein E protected bacteriophage K3 from inactivation by protein E. Bacteriophage K3 used a major outer membrane protein, protein II*, as part of its receptor. We conclude that proteins E and II* have a common region which interacts with bacteriophage K3. Protein E also inactivated two recently described bacteriophages, TC45 and TC23, that use protein E as at least part of their receptor.  相似文献   

10.
A virulent phage, named PP01, specific for Escherichia coli O157:H7 was isolated from swine stool sample. The phage concentration in a swine stool, estimated by plaque assay on E. coli O157:H7 EDL933, was 4.2x10(7) plaque-forming units per g sample. PP01 infects strains of E. coli O157:H7 but does not infect E. coli strains of other O-serogroups and K-12 strains. Infection of an E. coli O157:H7 culture with PP01 at a multiplicity of infection of two produced a drastic decrease of the optical density at 600 nm due to cell lysis. The further incubation of the culture for 7 h produced phage-resistant E. coli O157:H7 mutant. One PP01-resistant E. coli O157:H7 mutant had lost the major outer membrane protein OmpC. Complementation by ompC from a O157:H7 strain but not from a K-12 strain resulted in the restoration of PP01 susceptibility suggesting that the OmpC protein serves as the PP01 receptor. DNA sequences and homology analysis of two tail fiber genes, 37 and 38, responsible for the host cell recognition revealed that PP01 is a member of the T-even bacteriophages, especially the T2 family.  相似文献   

11.
Phage attachment sites on bacterial cell surfaces are provided by the exposed regions of outer membrane proteins and lipopolysaccharide (LPS). We have identified surface exposed residues of OmpC that are important for phage binding. This was accomplished by employing a genetic scheme in which two simultaneous selections enriched for ompC mutants defective in phage attachment, but retained functional channels. Mutational alterations were clustered in three regions of the OmpC protein. These regions also showed the greatest divergence from the analogous regions of the highly related OmpF and PhoE proteins. The majority of alterations (8 out of 11) occurred in a region of OmpC that is predicted to form a large exterior loop (loop 4). Interestingly, while the removal of this loop prevented phage binding, the deletion conferred enhanced channel activities.   Another type of phage-resistant mutants synthesized defective LPS molecules. Biochemical analysis of mutant LPS revealed it to be of the Re-type LPS, lacking the heptose moieties from the LPS inner core. As a result of this LPS defect, many outer membrane proteins were present in somewhat reduced levels. The phage resistance seen in these mutants could be a result of both the presence of defective LPS and reduced OmpC levels.  相似文献   

12.
OmpF and OmpC are major outer membrane proteins. Although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine the difference, a method was developed to construct a series of ompF-ompC chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The genomic structures of these chimeric genes were determined by restriction endonuclease analysis and nucleotide sequence determination. In almost all cases, recombination took place between the corresponding homologous regions of the ompF and ompC genes. Many of the chimeric genes produced proteins that migrated to various positions between the OmpF and OmpC proteins on polyacrylamide gel. On the basis of the results, a domain contributing to the mobility difference the OmpF and OmpC proteins was identified. Some chimeric genes did not accumulate outer membrane proteins, despite the fact that the fusion of the ompF and ompC genes was in frame. Bacterial cells possessing the chimeric proteins were also tested as to their sensitivity to phages which require either OmpF or OmpC as a receptor component. The chimeric proteins were either of the OmpF or OmpC type with respect to receptor activity. Based on the observations, the roles of submolecular domains in the structure, function, and biogenesis of the OmpF and OmpC proteins are discussed.  相似文献   

13.
A panel of monoclonal antibodies, seven against the trimeric and seven against the monomeric forms to outer membrane protein D (OmpD) of Salmonella typhimurium were produced. The specificities of these monoclonal antibodies for the porin proteins of S. typhimurium and their cross-reactions with Salmonella porins OmpC and OmpF were determined by Western immunoblotting and enzyme-linked immunosorbent assay. We observed that OmpD shared more epitopes and had greater structural similarity with OmpC than with OmpF.  相似文献   

14.
Gram‐negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi‐component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC‐MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.  相似文献   

15.
A novel cell surface display system was developed by employing Escherichia coli outer membrane protein C (OmpC) as an anchoring motif. Polyhistidine peptides consisting of up to 162 amino acids could be successfully displayed on the seventh exposed loop of OmpC. Recombinant cells displaying polyhistidine could adsorb up to 32.0 micromol of Cd(2+) per g (dry weight) of cells.  相似文献   

16.
The expression of assembly-defective outer membrane proteins can confer lethality if they are not degraded by envelope proteases. We report here that the expression of a mutant OmpC protein, OmpC(2Cys), which forms disulfide bonds in the periplasm due to the presence of two non-native cysteine residues, is lethal in cells lacking the major periplasmic protease, DegP. This lethality is not observed in dsbA strains that have diminished ability to form periplasmic disulfide bonds. Our data show that this OmpC(2Cys)-mediated lethality in a degP::Km(r) dsbA(+) background can be reversed by a DegP variant, DegP(S210A), that is devoid of its proteolytic activity but retains its reported chaperone activity. However, DegP(S210A) does not reverse the lethal effect of OmpC(2Cys) by correcting its assembly but rather by capturing misfolded mutant OmpC polypeptides and thus removing them from the assembly pathway. Displacement of OmpC(2Cys) by DegP(S210A) also alleviates the negative effect that the mutant OmpC protein has on wild-type OmpF.  相似文献   

17.
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively.  相似文献   

18.
19.
The involvement of lipopolysaccharide and outer membrane proteins in the binding ofEscherichia coli to cellulose was investigated. Cellulose binding was assayed in defined strains with or without O-antigenic polysaccharide and in mutants with defects in lipopolysaccharide core synthesis. Binding was also tested in strains lacking major outer membrane proteins. Optimal cellulose binding was exhibited by rough strains and was reduced to various extents in the presence of different O-antigens. Core defects also reduced but did not abolish binding to cellulose. Reduced binding was also found in mutants lacking OmpC protein, but OmpC/OmpA double mutants orompB mutants lacking OmpC and OmpF were not affected. Mutants with reduced cellulose binding were also isolated directly through selection of nonbinding populations after chromatography on cellulose columns. Each of the independent isolates derived fromE. coli K12 with reduced cellulose binding had multiple mutations, with additional phenotypic changes such as phage resistance, increased sensitivity to bile salts, or altered patterns of outer membrane proteins. These results suggest that no single receptor that could be altered by mutation was responsible for the binding ofE. coli to cellulose. Rather, the nonspecific binding of cellulose was more likely to be due to interaction with, or the combined activity of, several integral outer membrane components that could be masked by O-antigen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号