首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of a deoxyribonucleoside kinase in Drosophila melanogaster (Dm-dNK) with remarkably broad substrate specificity has recently been indicated (Munch-Petersen, B., Piskur, J., and S?ndergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). To prove that the capacity to phosphorylate all four deoxyribonucleosides is in fact associated to one polypeptide chain, partially sequenced cDNA clones, originating from the Berkeley Drosophila genome sequencing project, were searched for homology with human deoxyribonucleoside kinases. The total sequence of one cDNA clone and the corresponding genomic DNA was determined and expressed in Escherichia coli as a glutathione S-transferase fusion protein. The purified and thrombin cleaved recombinant protein phosphorylated the four deoxyribonucleosides with high turnover and K(m) values similar to those of the native Dm-dNK, as well as the four ribonucleosides and many therapeutical nucleoside analogs. Dm-dNK has apparently the same origin as the mammalian kinases, thymidine kinase 2, deoxycytidine kinase, deoxyguanosine kinase, and the herpes viral thymidine kinases, but it has a unique C terminus that seems to be important for catalytic activity and specificity. The C-terminal 20 amino acids were dispensable for phosphorylation of deoxyribonucleosides but necessary for full activity with purine ribonucleosides. Removal of the C-terminal 20 amino acids increased the specific activity 2-fold, but 99% of the activity was lost after removal of the C-terminal 30 amino acids.  相似文献   

2.
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is sequence-related to three human deoxyribonucleoside kinases and to herpes simplex virus type-1 thymidine kinase. Dm-dNK phosphorylates both purine and pyrimidine deoxyribonucleosides and nucleoside analogues although it has a preference for pyrimidine nucleosides. We performed site-directed mutagenesis on residues that, based on structural data, are involved in substrate recognition. The aim was to increase the phosphorylation efficiency of purine nucleoside substrates to create an improved enzyme to be used in suicide gene therapy. A Q81N mutation showed a relative increase in deoxyguanosine phosphorylation compared with the wild-type enzyme although the efficiency of deoxythymidine phosphorylation was 10-fold lower for the mutant. In addition to residue Q81 the function of amino acids N28, I29 and F114 was investigated by different substitutions. All of the mutated enzymes showed decreased efficiency of thymidine phosphorylation in comparison with the wild-type enzyme supporting their importance for substrate binding and/or catalysis as proposed by the recently solved structure of Dm-dNK.  相似文献   

3.
Nucleoside kinases from several species are investigated as "suicide genes" for treatment of malignant tumors by combined gene/chemotherapy. We have recently cloned a multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK), and we have shown that the enzyme phosphorylates cytotoxic pyrimidine and purine nucleoside analogs. The broad substrate specificity of the enzyme, as well as its very high catalytic rate, makes it a unique member of the nucleoside kinase enzyme family. In the present study, we evaluated Dm-dNK as a suicide gene by constructing a replication-deficient retroviral vector that expresses the enzyme. The human pancreatic adenocarcinoma cell line MIA PaCa-2 and a thymidine kinase-deficient osteosarcoma cell line were transduced with the recombinant virus. We showed that Dm-dNK can be expressed in human cells, that the enzyme retained its enzymatic activity, and that it is localized in the cell nuclei due to a nuclear localization signal in its C-terminal region. The cells expressing Dm-dNK exhibited increased sensitivity to several cytotoxic nucleoside analogs, such as 1-beta-d-arabinofuranosylcytosine, 1-beta-d-arabinofuranosylthymine, (E)-5-(2-bromovinyl)-2'-deoxyuridine, 2-chloro-2'-deoxyadenosine, and 2',2'-difluorodeoxycytidine. These findings suggest that Dm-dNK may be used as a suicide gene in combined gene/chemotherapy of cancer.  相似文献   

4.
The multisubstrate nucleoside kinase of Drosophila melanogaster (Dm-dNK) can be expressed in human solid tumor cells and its unique enzymatic properties makes this enzyme a suicide gene candidate. In the present study, Dm-dNK was stably expressed in the CCRF-CEM and H9 T-lymphoblastoid cell lines. The expressed enzyme was localized to the cell nucleus and the enzyme retained its activity. The Dm-dNK overexpressing cells showed approximately 200-fold increased sensitivity to the cytostatic activity of several nucleoside analogs, such as the pyrimidine nucleoside analogs (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and 1-beta-d-arabinofuranosylthymine (araT), but not to the antiherpetic purine nucleoside analogs ganciclovir, acyclovir and penciclovir, which may allow this technology to be applied in donor T cells and/or rescue graft vs. host disease to permit modulation of alloreactivity after transplantation. The most pronounced effect on the steady-state dNTP levels was a two- to 10-fold increased dTTP pool in Dm-dNK expressing cells that were grown in the presence of 1 microm of each natural deoxyribonucleoside. Although the Dm-dNK expressing cells demonstrated dNTP pool imbalances, no mitochondrial DNA deletions or altered mitochondrial DNA levels were detected in the H9 Dm-dNK expressing cells.  相似文献   

5.
In contrast to all known deoxyribonucleoside kinases, a single highly efficient deoxyribonucleoside kinase from Drosophila melanogaster (Dm-dNK) is able to phosphorylate all precursor nucleosides for DNA synthesis. Dm-dNK was mutated in vitro by high-frequency random mutagenesis, expressed in the thymidine kinase-deficient Escherichia coli strain KY895 and clones were selected for sensitivity to the nucleoside analogs 1-beta-d-arabinofuranosylcytosine (AraC, Cytarabine), 3'-azido-2', 3'-dideoxythymidine (AZT, Zidovudine, Retrovir, 2', 3'-dideoxyadenosine (ddA) and 2',3'-dideoxycytidine (ddC, Zalcitabine, Hivid. Thirteen mutants with increased sensitivity compared to the wild-type Dm-dNK were isolated from a relatively small pool of less than 10,000 clones. Eight mutant Dm-dNKs increased the sensitivity of KY895 to more than one analog, and two of these mutants even to all four nucleoside analogs. Surprisingly, the mutations did not map to the five regions which are highly conserved among deoxyribonucleoside kinases. The molecular background of improved sensitivity was characterized for the double-mutant MuD (N45D, N64D), where the LD(100) value of transformed KY895 decreased 316-fold for AZT and more than 11-fold for ddC when compared to wild-type Dm-dNK. Purified recombinant MuD displayed higher K(m) values for the native substrates than wild-type Dm-dNK and the V(max) values were substantially lower. On the other hand, the K(m) and V(max) values for AZT and the K(m) value for ddC were nearly unchanged between MuD and wild-type Dm-dNK. Additionally, a decrease in feedback inhibition of MuD by thymidine triphosphate (TTP) was found. This study demonstrates how high-frequency mutagenesis combined with a parallel selection for desired properties provides an insight into the structure-function relationships of the multisubstrate kinase from D. melanogaster. At the same time these mutant enzymes exhibit properties useful in biotechnological and medical applications.  相似文献   

6.
We have recently shown that the overexpression of Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) in cancer cell lines increases the cells' sensitivity to several cytotoxic nucleoside analogs and the enzyme may accordingly be used as a suicide gene in combined gene/chemotherapy treatment of cancer. To further characterize the enzyme for possible use as a suicide gene, we constructed a replication-deficient retroviral vector that expressed either the wild-type enzyme that localizes to the cell nucleus or a mutant (arg247ser) that localizes to the cytosol. A thymidine kinase-deficient osteosarcoma cell line was transduced with the recombinant virus and we compared the sensitivity and bystander cell killing when the cell lines were incubated with the pyrimidine nucleoside analogs (E)-5-(2-bromovinyl)-2'-deoxyuridine and 1-beta-D-arabinofuranosylthymine. In summary, we showed that the cells' sensitivity and the efficiency of bystander cell killing were not dependent on whether Dm-dNK was located in the nucleus or cytosol.  相似文献   

7.
In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine deoxyribonucleosides than the fruit fly multisubstrate deoxyribonucleoside kinase (EC 2.7.1.145). In addition, Ag-dNK could also phosphorylate some medically interesting nucleoside analogs, like stavudine (D4T), 2-chloro-deoxyadenosine (CdA) and 5-bromo-vinyl-deoxyuridine (BVDU). Although the biological significance of multisubstrate deoxyribonucleoside kinases and their diversity among insects remains unclear, the observed variation provides a whole range of applications, as species specific and highly selective targets for insecticides, they have a potential to be used in the enzymatic production of various (di-)(deoxy-)ribonucleoside monophosphates, and as suicide genes in gene therapy.  相似文献   

8.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

9.
The deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) has a broad substrate specificity and a higher catalytic rate than other known deoxyribonucleoside kinases. Therefore it is a natural candidate for possible use as a suicide gene in combined gene/chemotherapy of cancer. We have performed site directed mutagenesis and tested different truncated forms of the enzyme in order to increase the affinity for ganciclovir.  相似文献   

10.
Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine kinase with ATP at the nucleoside substrate binding site. Compared to the human kinase, the Drosophila kinase has a wider substrate cleft, which may be responsible for the broad substrate specificity of this enzyme. The human deoxyguanosine kinase is highly specific for purine substrates; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases.  相似文献   

11.
In mammals, the four native deoxyribonucleosides are phosphorylated to the corresponding monophosphates by four deoxyribonucleoside kinases, which have specialized substrate specificities. These four enzymes are likely to originate from a common progenitor kinase. Insects appear to have only one multisubstrate deoxyribonucleoside kinase (dNK, EC 2.7.1.145), which prefers pyrimidine nucleosides, but can also phosphorylate purine substrates. When the structures of the human deoxyguanosine kinase (dGK, EC 2.7.1.113) and the dNK from Drosophila melanogaster were compared, a limited number of amino acid residues were identified and proposed to be responsible for the substrate specificity. Three of these key residues in Drosophila dNK were then mutagenized and the mutant enzymes were characterized regarding their ability to phosphorylate native deoxyribonucleosides and nucleoside analogs. The mutations converted the dNK substrate specificity from predominantly pyrimidine specific into purine specific. A similar scenario could have been followed during the evolution of kinases. Upon gene duplication of the progenitor kinase, only a limited number of single amino acid changes has taken place in each copy and resulted in substrate-specialized enzymes.  相似文献   

12.
Reaction of human UMP-CMP kinase with natural and analog substrates.   总被引:1,自引:0,他引:1  
UMP-CMP kinase catalyses an important step in the phosphorylation of UTP, CTP and dCTP. It is also involved in the necessary phosphorylation by cellular kinases of nucleoside analogs used in antiviral therapies. The reactivity of human UMP-CMP kinase towards natural substrates and nucleotide analogs was reexamined. The expression of the recombinant enzyme and conditions for stability of the enzyme were improved. Substrate inhibition was observed for UMP and CMP at concentrations higher than 0.2 mm, but not for dCMP. The antiviral analog l-3TCMP was found to be an efficient substrate phosphorylated into l-3TCDP by human UMP-CMP kinase. However, in the reverse reaction, the enzyme did not catalyse the addition of the third phosphate to l-3TCDP, which was rather an inhibitor. By molecular modelling, l-3TCMP was built in the active site of the enzyme from Dictyostelium. Human UMP-CMP kinase has a relaxed enantiospecificity for the nucleoside monophosphate acceptor site, but it is restricted to d-nucleotides at the donor site.  相似文献   

13.
The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3'-modified nucleoside analogs like 3'-azidothymidine (AZT) was nearly unchanged. Here, we identify the mutation N64D as being responsible for these changes. Furthermore, we crystallized the mutant enzyme in the presence of one of its substrates, thymidine, and the feedback inhibitor, dTTP. The introduction of the charged Asp residue appears to destabilize the LID region (residues 167-176) of the enzyme by electrostatic repulsion and no hydrogen bond to the 3'-OH is made in the substrate complex by Glu172 of the LID region. This provides a binding space for more bulky 3'-substituents like the azido group in AZT but influences negatively the interactions between Dm-dNK, substrates and feedback inhibitors based on deoxyribose. The detailed picture of the structure-function relationship provides an improved background for future development of novel mutant suicide genes for Dm-dNK-mediated gene therapy.  相似文献   

14.
Kinase activity detected in immune complexes containing the src gene product of the avian sarcoma virus has been reported. To further characterize this immune complex kinase, we developed a routine quantitative assay involving trichloroacetic acid precipitation on filters. The enzyme reaction required either Mg2+ or Mn2+, but was inactive with Ca2+. The kinetics of the phosphorylation reaction indicated a transient enzyme activity limited by rapid substrate-dependent inactivation of the enzyme. A variety of nucleoside and deoxyribonucleoside triphosphates (dATP, ATP, GTP, CTP, dGTP, TTP, dCTP) served as phosphoryl donors. The phosphorylation of immunoglobulin G was inhibited by the presence of nucleoside diphosphates. Deoxyribonucleoside diphosphates can either stimulate or inhibit the kinase reaction depending upon the concentration used. The unusual enzymatic properties of the immune complex kinase raise the possibility that the enzyme does not function as a protein kinase in vivo, but rather belongs to a different class of kinases (nucleotide kinases) which adventitiously phosphorylates immunoglobulin G when immunoprecipitated with immune serum.  相似文献   

15.
l-Nucleoside analogs are a new class of clinically active antiviral and anticancer agents. The phosphorylation of these analogs from diphosphate to triphosphate metabolites is crucial for their biological action. We studied the role of 3-phosphoglycerate kinase, a glycolytic enzyme, in the metabolism of l-nucleoside analogs, using small interfering RNAs to down-regulate the amount of this enzyme in HelaS3 and 2.2.15 cells, chosen as models for studying the impact of the enzyme on the anticancer and antihepatitis B virus activities of these analogs. Decrease in the expression of 3-phosphoglycerate kinase led to a corresponding decrease in the formation of the triphosphate metabolites of l-nucleoside analogs (but not d-nucleoside analogs), resulting in detrimental effects on their activity. The enzyme is important for generating as well as maintaining the steady state levels of l-nucleotides in the cells, thereby playing a key role in the activity of l-nucleoside analogs against human immunodeficiency virus, hepatitis B virus, and cancer. This study also indicates a structure-based distinction in the metabolism of l- and d-nucleoside analogs, disputing the classic notion that nucleoside diphosphate kinases are responsible for the phosphorylation of all classes of nucleoside analog diphosphates.  相似文献   

16.
The efficiency of nucleoside kinase suicide gene therapy for cancer is highly dependent on "bystander" cell killing, i.e., the transfer of cytotoxic phosphorylated nucleoside analogs to cells adjacent to those expressing the suicide enzyme. We have recently studied the possible use of mitochondrial nucleoside kinases as suicide genes. In the present study, we investigated if nucleoside analogs phosphorylated in the mitochondrial matrix cause bystander killing. We used deoxycytidine kinase-deficient Chinese hamster ovary cells reconstituted with deoxycytidine kinase targeted to either the cytosol or mitochondria matrix and determined the bystander cell killing when these cells were incubated with the nucleoside analogs 1-beta-D-arabinofuranosylcytosine and 2',2'-difluorodeoxycytidine. A bystander effect occurred when nucleoside analogs were phosphorylated in the cytosol, but not when these compounds were phosphorylated in the mitochondria. These findings suggest that nucleoside kinases targeted to the mitochondrial matrix have limited use in suicide gene therapy when efficient bystander cell killing is required.  相似文献   

17.
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.  相似文献   

18.
Highly selective arabinofuranosyl nucleosides, which inhibit the mitochondrial thymidine kinase (TK-2) without affecting the closely related herpes simplex virus type 1 thymidine kinase (HSV-1 TK), varicella-zoster virus thymidine kinase (VZV-TK), cytosolic thymidine kinase (TK-1) or the multifunctional Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK), have been obtained. SAR studies indicate a close relation between the length of the substituent at the 2' position of the arabinofuranosyl moiety and the inhibitory activity.  相似文献   

19.
Cytosolic 5'-nucleotidase has been implicated in the phosphorylation of certain nucleosides of therapeutic interest. In vitro, IMP and GMP serve as the optimal phosphate donors for this nucleoside phosphotransferase reaction. Existing assays for nucleoside phosphorylation effected by 5'-nucleotidase require a radiolabeled nucleoside as the phosphate acceptor and separation of the substrate-nucleoside from product-nucleotide has been accomplished either by a filter binding method or HPLC. However, detection of the phosphorylation of unlabeled nucleoside by HPLC is difficult since the ultraviolet absorbance of the phosphate donor, IMP, frequently obscures the absorbance of newly formed nucleotide. The use of ribavirin 5'-phosphate (RMP, 1,2,4-triazole-3-carboxamide riboside 5-monophosphate) as the phosphate donor obviates this difficulty since this triazole heterocycle does not significantly absorb at the wavelengths used to detect most nucleoside analogs. Using this procedure, a 5'-nucleotidase activity from the 100,000 x g supernatant fraction of human T-lymphoblasts deficient in adenosine kinase, hypoxanthine-guanine phosphoribosyltransferase, and deoxycytidine kinase, was characterized with regard to structure-activity relationships for certain inosine and guanosine analogs.  相似文献   

20.
Human cells salvage pyrimidine deoxyribonucleosides via 5'-phosphorylation which is also the route of activation of many chemotherapeutically used nucleoside analogs. Key enzymes in this metabolism are the cytosolic thymidine kinase (TK1), the mitochondrial thymidine kinase (TK2) and the cytosolic deoxycytidine kinase (dCK). These enzymes are expressed differently in different tissues and cell cycle phases, and they display overlapping substrate specificities. Thymidine is phosphorylated by both thymidine kinases, and deoxycytidine is phosphorylated by both dCK and TK2. The enzymes also phosphorylate nucleoside analogs with very different efficiencies. Here we present specific radiochemical assays for the three kinase activities utilizing analogs as substrates that are by more than 90 percent phosphorylated solely by one of the kinases; i.e. 3'-azido-2',3'-dideoxythymidine (AZT) as substrate for TK1, 1-beta-D-arabinofuranosylthymidine (AraT) for TK2 and 2-chlorodeoxyadenosine (CdA) for dCK. We determined the fraction of the total deoxycytidine and thymidine phosphorylating activity that was provided by each of the three enzymes in different human cells and tissues, such as resting and proliferating lymphocytes, lymphocytic cells of leukemia patients (chronic lymphocytic, chronic myeloic and hairy cell leukemia), muscle, brain and gastrointestinal tissue. The detailed knowledge of the pyrimidine deoxyribonucleoside kinase activities and substrate specificities are of importance for studies on chemotherapeutically active nucleoside analogs, and the assays and data presented here should be valuable tools in that research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号