首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.  相似文献   

2.
3.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

4.
A substance P (SP) analog, [D-Pro4,D-Trp7,9,10] SP4-11, is known to inhibit the actions of various structurally unrelated messenger molecules as well as SP. Our studies on the effects of this peptide on the regulation of purified G proteins by receptor showed that at least some of the biological effects of the peptide can be explained by the ability of the peptide to block the activation of G proteins by receptors. Here we report that a novel truncated SP-related peptide, pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2, inhibited the activation of G(i) or G(o) by M2 muscarinic cholinergic receptor (M2 mAChR) or of Gs by beta-adrenergic receptor in the reconstituted phospholipid vesicles, assayed by receptor-promoted GTP hydrolysis. The inhibition by the peptide was apparently reversible and competitive with respect to receptor binding to G proteins; the inhibition could be overcome by increasing the concentration of receptor in the vesicles and was not altered by changes in the concentration of G protein. The competing effects of the peptide were used to analyze the effect of agonist on receptor-G protein interaction. The concentration change of muscarinic agonist did not alter the inhibitory effects of the peptide on M2 mAChR-promoted GTPase by G(o), which is consistent with the idea that agonist increases the regulatory efficiency of the receptor but does not alter its affinity for G proteins. This new group of compounds (G protein antagonists) is a promising tool to study receptor-G protein interaction quantitatively.  相似文献   

5.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron overload disease hereditary hemochromatosis. HFE binds to transferrin receptor (TfR), the receptor used by cells to obtain iron in the form of diferric transferrin (Fe-Tf). Previous studies demonstrated that HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, and that membrane-bound or soluble HFE binding to cell surface TfR results in a reduction in the affinity of TfR for Fe-Tf. We studied the inhibition by soluble HFE of the interaction between soluble TfR and Fe-Tf using radioactivity-based and biosensor-based assays. The results demonstrate that HFE inhibits the TfR:Fe-Tf interaction by binding at or near the Fe-Tf binding site on TfR, and that the Fe-Tf:TfR:HFE ternary complex consists of one Fe-Tf and one HFE bound to a TfR homodimer.  相似文献   

6.
The v-sis oncogene product p28v-sis and the platelet-derived growth factor (PDGF) B chain share 92% homology with each other and over 50% homology with the PDGF A chain. Exogenously added homodimers of PDGF A and PDGF B and of p28v-sis are potent mitogens but only PDGF B and p28v-sis induce transformation when endogenously expressed with a strong promoter. Because exogenous PDGF AA and PDGF BB both initiate a full mitogenic response, understanding the mechanisms underlying the difference in their transforming potential may clarify how growth factor genes act as oncogenes. In this work, we compared cells expressing high levels of PDGF A and v-sis. We observed that transformation by v-sis correlated directly with the rapid degradation (t1/2 approximately 20 min) of the alpha and beta PDGF receptors, with a failure of either the alpha or beta receptor to be fully processed and with the association of high levels of phosphatidylinositol (PI) 3-kinase with immunoprecipitates of the PDGF receptors. In contrast, in cells expressing essentially equal levels of PDGF A, transformation was not detected, alpha and beta PDGF receptor processing was normal, and association of PI 3-kinase with receptors in immunoprecipitates was not found above control values. The ability of v-sis to autoactivate PDGF receptors within processing compartments and to initiate activation of the PI 3-kinase signaling pathway coupled with the failure of PDGF A to activate its receptor intracellularly and to induce transformation when endogenously expressed at high levels suggests that the internal autoactivation of PDGF receptors may be essential for transformation by v-sis.  相似文献   

7.
Rat alveolar macrophages secrete a growth factor that renders rat lung fibroblasts competent to initiate DNA synthesis in vitro in the presence of platelet-poor plasma. This biological activity resembles that of platelet-derived growth factor (PDGF). After separation from putative associated binding proteins by chromatography under acidic conditions, the macrophage-derived factor exhibited a relative molecular weight similar to that of highly purified human PDGF. The factor bound to a monospecific antibody to human PDGF and thus could be quantitated in an enzyme immunoassay for PDGF. It competed with radiolabeled human PDGF for receptor sites for PDGF on rat lung fibroblasts, and binding to these receptor sites could be specifically inhibited by anti-PDGF. These data strongly support the view that the factor derived from rat alveolar macrophages is homologous to human PDGF and is similar to human macrophage-derived PDGF-like growth factor. Furthermore, we have demonstrated that the lung contains both an effector cell (pulmonary macrophage) and a potential target cell (interstitial fibroblast) for this cytokine. Therefore the rat appears to be an appropriate animal model in which to study macrophage-derived PDGF-like growth factors as mediators of proliferation in pulmonary fibrogenesis.  相似文献   

8.
9.
Malignant transformation induced by simian sarcoma virus is mediated by its v-sis protein, the monkey homolog of the platelet-derived growth factor (PDGF) B chain. By use of an appropriately engineered baculovirus expression vector, the v-sis protein was expressed in the insect cell line Spodoptera frugiperda (Sf9) at a level 50- to 100-fold higher than that observed with overexpression in mammalian-cell transfectants. The sis protein produced by Sf9 cells underwent processing similar to that observed in mammalian cells, including efficient disulfide-linked dimer formation. Moreover, the recombinant sis protein was capable of binding PDGF receptors and inducing DNA synthesis as efficiently as PDGF-B synthesized by mammalian cells. A significant fraction of sis protein was released from Sf9 cells, which made possible a one-step immunoaffinity purification to near homogeneity with a 40% recovery of biological activity. These results demonstrate that a protein whose normal processing requires both intrachain and interchain disulfide-bridge formation can be efficiently expressed in a biologically active form in insect cells by using a baculovirus vector system.  相似文献   

10.
We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.  相似文献   

11.
Deletion scanning mutagenesis within the transforming region of the v-sis oncogene was used to dissect structure-function relationships. Mutations affecting codons within a domain encoding amino acids 136 through 148 had no effect upon homodimer formation or recognition by antisera which detect determinants dependent upon native intrachain disulfide linkages, yet the same mutations completely abolished transforming activity. A platelet-derived growth factor B (PDGF B) monoclonal antibody that prevents its interaction with PDGF receptors recognized v-sis, delta 142 (deletion of codon 142), and delta 148 but not delta 136, delta 137, or delta 139 mutants. These findings mapped the epitope recognized by this monoclonal antibody to include amino acid residues 136 to 139. Furthermore, mutations in the codon 136 to 148 domain caused markedly impaired ability to induce PDGF receptor tyrosine phosphorylation. Thus, subtle conformational alterations in this small domain critically affect PDGF receptor recognition and/or functional activation.  相似文献   

12.
To investigate the role of platelet-derived growth factor (PDGF) during human placental development, expression of the genes encoding PDGF, the PDGF-receptor (PDGF-R) and the c-fos protooncogene was measured. Messenger RNAs for these genes were detected throughout pregnancy and peaked coordinately during the second trimester. An identical pattern of PDGF-R protein expression was confirmed by immunoblotting using a specific PDGF-R antiserum, measurement of PDGF-R kinase activity, and [125I]PDGF binding. These findings show that the components of the PDGF pathway are expressed in a concerted fashion throughout human pregnancy and are present at especially high levels during the midtrimester. Our observations suggest that through autocrine and/or paracrine mechanisms, PDGF is likely to play an important role in placental homeostasis.  相似文献   

13.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

14.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

15.
Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites.  相似文献   

16.
Degenerate oligonucleotide primers complementary to the highly conserved subdomains III and VIII of subclass III tyrosine kinase receptors (TKr-III) were utilized to amplify rat aortic cDNA by polymerase chain reaction. Most of the cloned DNA products were rat platelet-derived growth factor receptor beta and macrophage-colony stimulating growth factor receptor cDNAs. Screening of the clones with probes coding for the receptor-specific kinase insert domain allowed the identification of a novel putative TKr-III cDNA, which hybridized with a approximately 6.1 kb mRNA with a distinctive tissue distribution. In situ hybridization on rat tissues and Northern analysis of cultured cells indicate that endothelial cells express a novel putative TKr-III mRNA.  相似文献   

17.
The E5 oncoprotein of bovine papillomavirus type 1 is a 44-amino-acid, hydrophobic polypeptide which localizes predominantly in Golgi membranes and appears to transform cells through the activation of tyrosine kinase growth factor receptors. In fibroblasts, E5 interacts with both the 16-kilodalton vacuolar ATPase subunit and the platelet-derived growth factor receptor (PDGF-R) via its hydrophobic transmembrane domain and induces autophosphorylation of the receptor. To further analyze the correlation between E5 biological activity and its ability to bind these cellular proteins, a series of nine E5 transmembrane mutants was evaluated. In 32D mouse hematopoietic cells, there was an incomplete correlation between the abilities of the E5 mutant proteins to associate the PDGF-R and to transform cells. However, all transforming E5 mutant proteins induced PDGF-R tyrosine phosphorylation. In NIH 3T3 and C127 mouse fibroblasts, both transforming and nontransforming E5 mutant proteins were defective for PDGF-R binding. In addition, while most of the transforming E5 proteins induced PDGF-R phosphorylation, one hypertransforming mutant (serine 17) neither bound nor induced receptor autophosphorylation. These findings support the hypothesis that the transformation of fibroblasts by E5 transmembrane mutants can involve alternative cellular targets or potentially independent activities of the E5 protein. In addition, these results underscore the critical role of the transmembrane domain in mediating E5 biological activities.  相似文献   

18.
19.
The receptor for platelet-derived growth factor has been purified to homogeneity on a large scale from porcine uterus. The purification procedure utilizes solubilization of uterus membranes by Triton X-100, followed by sequential chromatographies on wheat germ agglutinin-Sepharose, fast protein liquid chromatography Mono-Q, and anti-phosphotyrosine-Sepharose. About 160 micrograms of homogeneous and functionally active 170-kDa receptor could be purified from 5 kg of uterus tissue. The pure receptor responded to platelet-derived growth factor stimulation by autophosphorylation, indicating that the receptor has a kinase domain as an integral part of the molecule. A rabbit antiserum was produced against the pure receptor, which specifically recognizes the intact 170-kDa receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号