首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Kim 《Molecular simulation》2013,39(14):1131-1138
The pharmacophore-guided docking study of aryl diketoacid (ADK) analogues revealed two distinctive hydrophobic binding sites (a pocket and a groove) around the UTP-binding site of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). Interestingly, the hydrophobic binding sites have appropriate shape and size to specifically substituted aromatic rings, which suggests the specific role of substituents on the aromatic ring in determining the binding affinity of the ADK analogue to the active site of the target enzyme. Binding mode analysis of ADK analogues with potent antiviral activity shows highly substituted aromatic rings map well onto the hydrophobic binding sites. For less active compounds, their lack of aromatic substitution and thereby insufficient size can be primarily ascribed to their inability to bind to the hydrophobic binding site. The characteristic binding mode of ADK analogues proposed in this study provides a useful tool in designing a structure–activity relationship study of novel ADK analogues based on various aromatic substituents.  相似文献   

2.
The function of the amino acid Thr246 in L-lactate dehydrogenase from Bacillus stearothermophilus has been investigated by site-directed replacement with glycine. Kinetic experiments with a number of 2-oxo acids showed strongly reduced activity for the mutated enzyme. However, the mutant enzyme shows a relative preference for the large hydrophobic sidechains of alpha-keto acids and an even higher specific activity than the wild-type lactate dehydrogenase for the polar oxaloacetate substrate. Graphic analyses indicate that the loss of one hydrogen bond, or intrusion of water into the active site, might be responsible for the reduced activity. The kinetic results suggest that the binding modes of bulky hydrophobic or polar substrates compensate to some degree for the partially disrupted active site.  相似文献   

3.
The size and position of a hydrophobic moiety on a benzolactam skeleton, which reproduces the active conformation and biological activity of teleocidins, play an important role in the appearance of the activity. Compounds with alkyl groups of various sizes and shapes at the 2-position of benzolactam were synthesized. Structure-activity results indicate that a hydrophobic substituent at the C-2 position plays a critical role in the appearance of biological activities, as in the case of substitution at C-9.  相似文献   

4.
Carboranes (dicarba-closo-dodecaboranes) are a class of carbon-containing polyhedral boron-cluster compounds having remarkable chemical and thermal stability, and hydrophobic character. These features may allow application of carboranes as a new hydrophobic core structure in biologically active molecules that interact hydrophobically with receptors. Here, we report the design and synthesis of novel androgen antagonists bearing a carborane moiety. These compounds, particularly 8a, 8c, and 9d, exhibited anti-androgenic activity similar to that of the well-known anti-androgen flutamide in reporter gene assay using NIH3T3 cells transfected with a human AR expression plasmid. The carborane cage seems to be a privileged hydrophobic pharmacophore for the expression of AR-antagonistic activity.  相似文献   

5.
A new model of kinase regulation based on the assembly of hydrophobic spines has been proposed. Changes in their positions can explain the mechanism of kinase activation. Here, we examined mutations in human cancer for clues about the regulation of the hydrophobic spines by focusing initially on mutations to Phe. We identified a selected number of Phe mutations in a small group of kinases that included BRAF, ABL1, and the epidermal growth factor receptor. Testing some of these mutations in BRAF, we found that one of the mutations impaired ATP binding and catalytic activity but promoted noncatalytic allosteric functions. Other Phe mutations functioned to promote constitutive catalytic activity. One of these mutations revealed a previously underappreciated hydrophobic surface that functions to position the dynamic regulatory αC-helix. This supports the key role of the C-helix as a signal integration motif for coordinating multiple elements of the kinase to create an active conformation. The importance of the hydrophobic space around the αC-helix was further tested by studying a V600F mutant, which was constitutively active in the absence of the negative charge that is associated with the common V600E mutation. Many hydrophobic mutations strategically localized along the C-helix can thus drive kinase activation.  相似文献   

6.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

7.
The photochromic ligand PTA is shown to exhibit induced optical activity only if it is in the trans- form and bound to an asymmetric, ordered macromolecular matrix possessing hydrophobic binding sites. This observation can be used to probe for the existence and location of hydrophobic, ordered amino acids in the active cleft of an enzyme. It also explains the regulation of enzymic activity by reversible photo isomerization of PTA.  相似文献   

8.
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Molecular dynamics umbrella sampling potential of mean force computations are used to quantify the impact of activating and inactivating mutations of c-Src kinase. The potential of mean force computations predict that a specific double mutant can stabilize c-Src kinase into an active-like conformation while disabling the binding of ATP in the catalytic active site. The active-like conformational equilibrium of this catalytically dead kinase is affected by a hydrophobic unit that connects to the hydrophobic spine network via the C-helix. The αC-helix plays a crucial role in integrating the hydrophobic residues, making it a hub for allosteric regulation of kinase activity and the active conformation. The computational free-energy landscapes reported here illustrate novel design principles focusing on the important role of the hydrophobic spines. The relative stability of the spines could be exploited in future efforts to artificially engineer active-like but catalytically dead forms of protein kinases.  相似文献   

9.
The adsorption of pulmonary surfactant to an air/fluid interface is influenced by calcium-dependent interactions between its lipid and protein components. The latter include a glycoprotein of 28-36 kDa (SP-A) and two smaller hydrophobic proteins of 5-8 kDa (SP-B, SP-C). Neutrophil elastase and other proteolytic enzymes found in the alveolar washings in a variety of acute lung injuries may cleave the protein components of lung surfactant. To examine the hypothesis that free airspace elastolytic activity may thereby impair surfactant function, we analyzed the effect of neutrophil elastase on surfactant activity in vitro. The adsorption characteristics of dog surfactant and of complexes reassembled from purified surfactant components were examined after incubations with active or heat-inactivated neutrophil elastase. Surfactant preincubated with the active enzyme showed a marked concentration-dependent slowing of adsorption associated with proteolytic cleavage of SP-A. To determine whether elastase also decreases surface activity by affecting the hydrophobic proteins SP-B and SP-C, we studied the effect of incubating elastase with liposomes prepared from surfactant lipid fractions which contain SP-B and SP-C. The addition of intact SP-A to these liposomes incubated with inactive enzyme immediately enhanced adsorption speed. This enhancement was greatly attenuated in liposomes treated with active elastase, suggesting that one or both of the hydrophobic surfactant proteins had been affected by elastase. We conclude that proteolytic cleavage of surfactant proteins reduces adsorption speed in vitro and may disturb surfactant function in vivo.  相似文献   

10.
Human urinary active kallikrein and prokallikrein were separated on DEAE-cellulose and octyl-Sepharose columns and both purified to homogeneity by affinity chromatography, gel filtration and hydrophobic h.p.l.c. Prokallikrein was monitored during purification by trypsin activation followed by determination of both amidase and kininogenase activity. After trypsin activation, purified prokallikrein had a specific kininogenase activity of 39.4 micrograms of bradykinin equivalent/min per mg and amidase activity of 16.5 mumol/min per mg with D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin. Purified active kallikrein had a specific activity of 47 micrograms of bradykinin/min per mg. The molecular mass of prokallikrein was 48 kDa on electrophoresis and 53 kDa on gel filtration whereas active kallikrein gave values of 46 kDa and 53 kDa respectively. Antisera to active and prokallikrein were obtained. In double immunodiffusion and immunoelectrophoresis, antiserum to active kallikrein reacted with active and pro-kallikrein. Antiserum to prokallikrein contained antibodies to determinants not found in active kallikrein, presumably due to the presence of the activation peptide in the proenzyme. Human prokallikrein can be activated by thermolysin, trypsin and human plasma kallikrein. Activation of 50% of the prokallikrein (1.35 microM) was achieved in 30 min with 25 nM-thermolysin, 78 nM-trypsin or 180 nM-human plasma kallikrein. Thus thermolysin was the most effective activator. Thermolysin activated prokallikrein by releasing active kallikrein with N-terminal Ile1-Val2. Thus human tissue (glandular) prokallikrein can be activated by two types of enzymes: serine proteinases, which cleave at the C-terminus of basic amino acids, and by a metalloproteinase that cleaves at the N-terminus of hydrophobic amino acids.  相似文献   

11.
A quantitative structure-activity relationship (QSAR) study has been made on some lipoxygenase inhibitors belonging to the series of omega-phenylalkyl hydroxamic acids, omega-naphthylalkyl hydroxamic acids, eicosatetraenoic acids, and 1H.benzimidazole-4-ols. It was found that the hydrophobic character of the molecules and the size of their substituents selectively govern their lipoxygenase inhibitory activity. The enzyme active site possesses a non-heme ferric ion, a hydrophobic domain, and a carboxylic acid binding site. It was found that while the functional group of inhibitors must interact with the ferric ion, the substituent on one side of it would be involved in hydrophobic interaction and that on the other side in van der Waals interaction with the enzyme so leading to an enhancement in the inhibitory activity of the inhibitors.  相似文献   

12.
HIV-1 envelope glycoprotein transmembrane subunit gp41 play a critical role in the fusion of viral and target cell membranes. The gp41 C-terminal heptad repeat region interacts with the N-terminal coiled-coil region to form a six-stranded core structure. Peptides derived from gp41 C-terminal heptad repeat region (C-peptides) are potent HIV-1 entry inhibitors by binding to gp41 N-terminal coiled-coil region. Most recently, we have identified two small organic compounds that inhibit HIV-1-mediated membrane fusion by blocking the formation of gp41 core. These two active compounds contain both hydrophobic and acidic groups while the inactive compounds only have hydrophobic groups. Analysis by computer modeling indicate that the acidic groups in the active compounds can form salt bridge with Lys 574 in the N-terminal coiled-coil region of gp41. Asp 632 in a C-peptide can also form a salt bridge with Lys 574. Replacement of Asp 632 with positively charged residues or hydrophobic residues resulted in significant decrease of HIV-1 inhibitory activity. These results suggest that a salt bridge between an N-terminal coiled coil of the gp41 and an antiviral agent targeted to the gp41 core is important for anti-HIV-1 activity.  相似文献   

13.
Alpha-amylase was covalently immobilized onto maleic anhydride copolymer films preserving activity. The initial activity of the immobilized layers strongly depended on the immobilization solution, and on the physicochemical properties of the copolymer film. Higher enzyme loading (quantified by amino acid analysis using HPLC) and activity (measured by following starch hydrolysis) were attainable onto hydrophilic, highly swelling 3-D poly(ethylene-alt-maleic anhydride) (PEMA) copolymer films, while immobilization onto hydrophobic poly(octadecene-alt-maleic anhydride) (POMA) copolymer films resulted in low content enzyme layers and lower activity. No significant activity was lost upon dehydration/re-hydration or storage of enzyme containing PEMA copolymer layers in deionised water for up to 48 h. In contrast, α-amylase decorated POMA films suffered a significant activity loss under those conditions. The distinct behaviours may be attributed to the different intrinsic physicochemical properties of the copolymer films. The compact, hydrophobic POMA films possibly favours hydrophobic interactions between the hydrophobic moieties of the protein and the surface, which may result in conformational changes, and consequent loss of activity. Surprisingly, residual activity was found after harsh treatments of active α-amylase PEMA based layers revealing that immobilization onto the hydrophilic polymer films improved the stability of the enzyme.  相似文献   

14.
Many synthetic retinoids contain an aromatic structure with a bulky hydrophobic fragment. In order to obtain retinoids with therapeutic potential that do not bind to or activate retinoic acid X receptors (RXRs), we focused on the introduction of novel hydrophobic moieties, that is, metacyclophane, phenalene and benzoheptalene derivatives. The designed compounds were synthesized and their agonistic activities towards RARs and RXRs were evaluated. Most of the active compounds showed selectivity for RARα and RARβ over RARγ, and higher RARβ transactivating activity seemed to correlate with higher cell differentiation-inducing activity towards promyelocytic leukemia cell line HL-60. These compounds showed no agonistic activity towards RXRs.  相似文献   

15.
Human growth hormone (hGH) binds lactogenic or somatotrophic receptors, creating active heterotrimeric complexes. Comparison of hGH structures, either free or bound to a single lactogenic or somatotrophic receptor, shows binding is associated with structural changes. Changes in hGH structure are unique when binding either lactogenic or somatotrophic receptors and they influence the spatial arrangement of residues constituting the second receptor-binding site. Using site-directed mutagenesis, we identified a contiguous set of largely hydrophobic residues that forms a motif communicating between the two receptor-binding sites of hGH. The residues are external to the receptor-binding epitopes and were identified when their mutation reduced site 2 function without changing site 1 function. The motif includes Phe44, Leu93, Tyr160, Leu163, and Tyr164, located in two hydrophobic clusters between the receptor-binding sites. Their mutation to Glu disrupts hydrophobic interactions and reduces lactogenic activity between 4.7- and 85-fold with little effect on somatotrophic activity or spectroscopic properties. These differential effects indicate that loss of lactogenic activity is not a result of global mis-folding. We propose the loss of lactogenic activity results from disruption of specific hydrophobic clusters that disables the site 1 binding-induced structuring of the second receptor-binding site.  相似文献   

16.
A peptide derived from apomyoglobin by cyanogen bromide cleavage was found to be an active emulsifier. This molecule, peptide 1-55, has two potential amphipathic alpha-helices and a hydrophilic C-terminal domain. The importance of each of these domains to the emulsifying properties of this molecule was investigated by testing the products of gene constructs based on the sequence of peptide 1-55, but lacking one of the three domains. The emulsifying activity of the peptides lacking either of the alpha-helices was correlated with the hydrophobic moments of their respective helices. The hydrophobic moment is a measure of the amphipathicity of alpha-helices; a hydrophobic moment analysis of other emulsifying peptides supports the hypothesis that a high hydrophobic moment contributes to good emulsifying properties in a molecule which contains alpha-helices.  相似文献   

17.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

18.
The kidney isozyme of 11beta-hydroxysteroid dehydrogenase (11-HSD2) protects the mineralocorticoid receptor from spurious activation by glucocorticoids. To explore structure-function relationships, human 11-HSD2 cDNA was subcloned into the bacterial expression vector, pET25b. E. coli transformed with wild-type cDNA produced active enzyme that retained biochemical characteristics of the native protein. The addition of 6 histidine residues to the C-terminus of the wild-type enzyme (11-HSD2/His) increased activity 2-fold. Whereas wild-type activity was almost completely sedimented following 100,000g centrifugation, 10-30% of total activity of 11-HSD2/His remained in the supernatant. The 11-HSD2 isozyme normally contains three N-terminal hydrophobic domains. Mutant 11-HSD2/His possessing a single hydrophobic domain retained partial activity, but elimination of all domains inactivated the enzyme. Thus, the N-terminal hydrophobic domains are essential for complete activity of 11-HSD2 but association with an intact cell membrane is not.  相似文献   

19.
SK-658 is a potent histone deacetylase (HDAC) inhibitor that showed higher activity than SAHA due to the presence of extended hydrophobic group. We designed and synthesized thioester and SS-hybrid bearing SK-658 analogs as HDAC inhibitors. All the compounds were active in nano molar range and showed higher inhibitory activity than SAHA and SK-658. Among these, disulfide compounds showed the highest activity.  相似文献   

20.
Abstract

A quantitative structure-activity relationship (QSAR) study has been made on some lipoxygenase inhibitors belonging to the series of ω-phenylalkyl hydroxamic acids, ω-naphthylalkyl hydroxamic acids, eicosatetraenoic acids, and 1H.benzimidazole-4-ols. It was found that the hydrophobic character of the molecules and the size of their substituents selectively govern their lipoxygenase inhibitory activity. The enzyme active site possesses a non-heme ferric ion, a hydrophobic domain, and a carboxylic acid binding site. It was found that while the functional group of inhibitors must interact with the ferric ion, the substituent on one side of it would be involved in hydrophobic interaction and that on the other side in van der Waals interaction with the enzyme so leading to an enhancement in the inhibitory activity of the inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号