首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

2.
Abstract Dilution of anoxic slurries of paddy soil resulted in a proportional decrease of the rates of total methanogenesis and the rate constants of H2 turnover per gram soil. Dilution did not affect the fraction of H2/CO2-dependent methanogenesis which made up 22% of total CH4 production. However, dilution resulted in a ten fold decrease of the H2 steady state partial pressure from approximately 4 to 0.4 Pa indicating that H2/CO2-dependent methanogenesis was more or less independent of the H2 pool. The rates of H2 production calculated from the H2 turnover rate constants and the H2 steady state partial pressures accounted for only < 5% of H2/CO2-dependent methanogenesis in undiluted soil slurries and for even less after dilution. Upon dilution, the Gibbs free energy available for H2/CO2-dependent methanogenesis decreased from −28.4 to only −5.6 kJ per mol. The results indicate that methane was mainly produced from interspecies H2 transfer within syntrophic bacterial associations and was not significantly affected by the outside H2 pool.  相似文献   

3.
Abstract: In vivo ATP synthesis of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1, derived from endogenous respiration, was examined. ATP was synthesized at both pH 6.5 and 8.5 after the start of the endogenous respiration by supplying O2 to the anaerobic cell suspension. The ATP synthesis at pH 6.5, but not at pH 8.5, was completely inhibited by a H+ conductor, carbonylcyanide m -chlorophenylhydrazone (CCCP). The CCCP-resistant ATP synthesis at pH 8.5 was strongly inhibited by an inhibitor of the respiration-dependent primary Na+ pump, 2- n -heptyl-4-hydroxyquinoline N -oxide, and essentially required Na+. These results show that this bacterium synthesizes ATP at pH 6.5 by electrochemical potentials across the membrane Δ ∼ μ H+, whereas at pH 8.5 by Δ ∼ μ Na+ but not Δ ∼ μ H+.  相似文献   

4.
Abstract The effect of cadmium (Cd) on methane formation from methanol and/or H2–CO2 by Methanosarcina barkeri was examined in a defined growth medium and in a simplified buffer system containing 50 mM Tes with or without 2 mM dithiothreitol (DTT). No inhibition of methanogenesis by high concentrations of cadmium was observed in growth medium. Similarly, little inhibition of methanogenesis by whole cells in the Tes buffer system was observed in the presence of 430 μM Cd or 370 μM mercury (Hg) with 2 mM DTT. When the concentration of DTT was reduced to 0.4 mM, almost complete inhibition of methanogenesis from H2–CO2 and methanol by 600 μM Cd was observed. In the absence of DTT, 150 μM Cd inhibited methanogenesis from H2–CO2 completely and from methanol by 97%. Methanogenesis from H2–CO2 was more sensitive to Cd than that from methanol.  相似文献   

5.
Washed bacterial suspensions obtained from the pig hindgut were incubated under 13CO2 in a buffer containing NaH13CO3 and carbohydrates. Incorporation of 13C into short chain fatty acids was assayed by quantitative nuclear magnetic resonance. The effects of different levels of H2 added to the gas phase (0, 20 and 80% v/v) and of the specific methanogenesis inhibitor 2-bromoethane-sulphonic acid (BES) were determined. In control incubations increasing the concentration of H2 markedly increased methane production. Single- and double-labelled acetate and butyrate were formed in all incubations. In the absence of BES, increasing H2 significantly increased the incorporation of 13CO2 into butyrate and the proportion of double-labelled acetate in total labelled acetate. The addition of BES proved to be very successful as a methane inhibitor and greatly enhanced the amount of mono- and double-labelled acetate, especially at the highest H2 partial pressure. The results suggest that methanogenesis inhibited both routes of reductive acetogenesis, i.e. the homoacetate fermentation of hexose (represented for the most part by single labelling) and the synthesis of acetate from external CO2 and H2 (represented mostly by double labelling). A highly significant interaction between BES and H2 concentration was observed. At the highest pH2 BES increased the proportion of labelled acetate in total acetate from 17.1% for the control to 50.9%. It was concluded that although acetogenesis and methanogenesis can occur simultaneously in the pig hindgut, reductive acetogenesis may become a significant pathway of acetate formation in the absence of methanogenesis.  相似文献   

6.
Abstract A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward > Na+ extruded. It is energized by the Δψ 2 component of the ΔμH+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F 1 F 0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net ΔμH+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.  相似文献   

7.
Subnanomolar concentrations (3 × 10−10 M) of Actinobacillus actinomycetemcomitans leukotoxin (Ltx) trigger apoptosis of JY cells, as shown by a decrease in mitochondrial transmembrane potential (ΔΨm), hyperproduction of reactive oxygen species (ROS) and release of cytochrome c from the intermembrane space. When compared with heat-inactivated leukotoxin (ΔI Ltx) controls, ATP levels in Ltx-treated JY cells continued to decrease during a 24 h experiment while cytoplasmic ADP concentrations were increasing. These results suggest that a blockage occurred in ATP/ADP exchange. To maintain ATP/ADP exchange, JY cells were transfected with bcl -2 and bcl -xL and incubated with Ltx. ATP levels of the transfected cells decreased to 67% (JY/ bcl -2) and 73% (JY/ bcl-x L) after the experiment. Furthermore, cytochrome c remained localized to the mitochondrial fraction of Ltx-treated JY/ bcl -2 and JY/ bcl-x L cells, whereas its presence in the cytoplasmic fraction of JY/ gen cells suggests an uncoupling of electron transport. Expression of bcl -2 and bcl-x L in cells inhibited downstream apoptotic events such as cleavage of poly(ADP-ribose) polymerase, DNA fragmentation and activation of a family of caspases. The results indicate that Ltx induces apoptosis through a mitochondrial pathway that involves decreased levels of the ADP in the mitochondrial matrix, a lack of substrate for ATP synthetase and arrest of oxidative phosphorylation.  相似文献   

8.
Abstract Washed invested vesicle preparations of Methanosarcina strain Gö1 catalyzed the formation of methyl-CoM from formaldehyde, H2 and CoM in the presence of tetrahydromethanopterin and 2-bromoethanesulfonate. The reaction was associated with the translocation of sodium ions into the lumen of the vesicles. This translocation was abolished by the Na+ ionophore ETH 157 but it was insensitive to the addition of the uncoupler SF6847 and the Na+/H+ antiport inhibitor amiloride and, therefore, is the result of a primary Na+ pump. Since the translocation of Na+ was also observed when formaldehyde + tetrahydromethanopterin was replaced by methyl-tetrahydromethanopterin, it follows that the methyl transfer from tetrahydromethanopterin to CoM is the sodium-motive reaction. Methyl-tetrahydromethanopterin could be replaced by methyl-tetrahydrofolate.  相似文献   

9.
Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.  相似文献   

10.
The control of a thermophilic continuous anaerobic digestion system when subjected to potential inhibitory shock loadings was achieved through the regulation of dissolved H2, monitored using membrane inlet mass spectrometry, by the controlled addition of carbon source. At a feed pump switching threshold equivalent to 1 μmol/1 H2 a steady state rate of methanogenesis of approximately 40 μmol/1/min was obtained. Higher H2 thresholds resulted in an inhibition of methanogenesis, but precise control of H2 concentration was demonstrated with an oscillatory response of period 2·5–5·0 min.  相似文献   

11.
Abstract In cell suspensions of the methanogenic bacterium strain Gö1 or Methanosarcina barkeri H2 formation from methanol in the presence of 2-bromoethanesulfonic acid (BES) was strictly dependent on sodium ions; apparent K S for Na+, 1.3±0.3 mM.H2 formation was inhibited by the uncoupler tetrachlorosalicylanilide (TCS), but this inhibition could be temporarily overcome, when a sodium pulse (100 mM) was given to the cell suspension. On the other hand, H2 formation from formaldehyde in the presence of BES (rate: 300 nmol H2/h·mg protein as compared to 25 nmol H2/h·mg protein from methanol) was not sodium-dependent, not TCS-sensitive and not inhibited by addition of monensin. H2 formation was accompanied by CO2 formation in stoichiometric amounts, 3 H2:1 CO2 for methanol and 2 H2:1 CO2 for formaldehyde oxidation.  相似文献   

12.
Abstract Recent investigations with Methanosarcina barkeri elucidated the role of sodium ions in the energy metabolism of methanogenic bacteria and provided evidence for a novel mechanism of energy transduction with Na+ as the coupling ion. During methanogenesis from methanol, an eletrochemical sodium gradient generated by a Na+/H+ antiporter is used as the driving force for the thermodynamically unfavourable oxidation of methanol to the formal redox level of formaldehyde. During methanogenesis from H2+ CO2, the reverse reaction, the reduction of formaldehyde to the level of methanol, is accompanied by a primary, electron transport-driven sodium extrusion. Acetogenesis from H2+ CO2 as carried out by Acetobacterium woodii is a sodium-dependent process and is accompanied by the generation of a transmembrane sodium gradient with the reduction of formaldehyde to the level of methanol as the sodium-dependent step.  相似文献   

13.
Abstract The initial step of methanogenesis from CO2 is the formation of formyl-methanofuran (formyl-MFR) from methanofuran (MFR), CO2 and H2. The enzymology of this novel type of CO2 fixation reaction has been difficult to study because formyl-MFR synthesis is subject to a complex activation. Recently, however, a number of advances have made questions regarding formyl-MFR synthesis more approachable.  相似文献   

14.
Abstract Methane formation from formaldehyde and H2 or from carbon dioxide and H2, as performed by cell suspensions of Methanosarcina barkeri , was coupled to ATP synthesis. In correspondence with this, methane formation was inhibited by N , N '-dicyclohexylcarbodiimide (DCCD), which at the same time, caused a decrease of the intracellular ATP concentration but only a slow decrease of the membrane potential. Addition of the uncoupler tetrachlorosalicylanilide (TCS) led to a relief of the inhibition of methane formation from CH2O + H2, but not from CO2+ H2.  相似文献   

15.
Chilling leads to cytoplasmic acidification in chill-sensitive plants. A possible explanation for this observation is that a ΔpH-stat between the cytosol and vacuole (ΔpHvac-stat) is perturbed by chilling. To understand the nature of this ΔpHvac-stat, the effect of temperature, between 20 and 0 °C, on pyrophosphate (PPi)- or ATP-dependent acidification of vacuolar vesicles, isolated from mung bean hypocotyls, was determined. Over the temperature range investigated, the H+-influx mediated by PPase was balanced with the H+-efflux, which was PPi-dependently suppressed, and consequently a constant pH in vesicles (pHin) of ca. 5 was maintained against temperature changes. However, the ΔpHin driven by ATP decreased as the temperature dropped. Thus, the PPi-dependent H+-accumulation may function as an essential factor to form a ΔpHvac-stat against temperature changes. Next, to study the chilling sensitivity of PPi-dependent H+-accumulation, vacuolar vesicles were isolated from control seedlings or from seedlings chilled at 0 °C for 1 d. Chilling treatment resulted in a decrease in the H+-accumulation rate and in the steady-state ΔpHin formed by PPi, the causes of which were enhanced by PPi-dependent H+-efflux and reduced by H+-influx driven by PPase. Together, the results suggest that the decrease of PPi-dependent H+-accumulation associated with the ΔpHvac-stat could result in cytoplasmic acidification.  相似文献   

16.
The effect of MRS broth on the stability of hydrogen peroxide (H2O2) has been studied. Known concentrations (1–100 μg ml−1) of H2O2 were prepared in distilled water, phosphate buffer (pH 7·0) and MRS broth (pH 6·2 and 3·9). H2O2 was very stable in aqueous and buffer solutions but it was rapidly degraded in MRS broth (pH 3·9). The presence of H2O2 in MRS broth (pH 6·2) could not be detected.  相似文献   

17.
Abstract: A fraction enriched in capillaries has been prepared from the guinea pig cerebral cortex. The purity of this fraction was checked by light- and electron-microscopic examination and by its high enrichment in alkaline phosphatase and γ-glutamyl transpeptidase. In the capillary-rich fraction, the endogenous level of histamine was 1.9%'of that measured in the initial hornogenate. The histamine-synthesizing enzyme, I-histidine decarboxylase, and the metabolizing enzyme, histamine-N-methyltransferase, were barely detectable. In addition, histamine elicits a twofold stimulation in the accumulation of cyclic AMP in this capillary fraction with an EC50 of 5 γM. Agonists and antagonists of the two types of histamine receptors (H1 and H2) were used for the characterization of the receptors mediating this action: H2-receptor agonists were able to activate the adenylate cyclase with "relative potencies" similar to that found on typical H2-receptors, and cimetidine, a specific H2-receptor antagonist, competitively inhibited the response to histamine with a K1 value reflecting its interaction with a single population of H2-receptors. On the contrary, data obtained with H1-receptor agonists and antagonists reflect their interaction with H2-receptors rather than H1-receptors. Thus H2-receptors are involved in the activation of adenylate cyclase of the capillary fraction.  相似文献   

18.
Abstract Extracts of Methanosarcina barkeri strain Fasaro oxidized formaldehyde to CO2 with methyl-coenzyme M as the natural terminal electron acceptor resulting in methanogenesis. A combination of the artificial electron acceptors methylviologen and metronidazole could substitute for methyl-coenzyme M. The rate of formaldehyde oxidation was thereby increased. Taking advantage of this artificial electron acceptor system the role of cofactors in formaldehyde oxidation was investigated. Cofactor-free extract of M. barkeri did not catalyze the oxidation of formaldehyde. CO2 formation could be restored by the addition of tetrahydromethanopterin-b (H4MPT-b) and methanofuran-b (MFR-b) from M. barkeri . Other low molecular weight or heat-resistant compounds stimulating formaldehyde oxidation were not found. Formaldehyde oxidation seems, therefore, to proceed via H4 MPT-b and MFR-b-derivatives already shown to be involved in methanogenesis from H2+ CO2.  相似文献   

19.
Methyl sulfides as intermediates in the anaerobic oxidation of methane   总被引:1,自引:0,他引:1  
While it is clear that microbial consortia containing Archaea and sulfate-reducing bacteria (SRB) can mediate the anaerobic oxidation of methane (AOM), the interplay between these microorganisms remains unknown. The leading explanation of the AOM metabolism is 'reverse methanogenesis' by which a methanogenesis substrate is produced and transferred between species. Conceptually, the reversal of methanogenesis requires low H2 concentrations for energetic favourability. We used 13C-labelled CH4 as a tracer to test the effects of elevated H2 pressures on incubations of active AOM sediments from both the Eel River basin and Hydrate Ridge. In the presence of H2, we observed a minimal reduction in the rate of CH4 oxidation, and conclude H2 does not play an interspecies role in AOM. Based on these results, as well as previous work, we propose a new model for substrate transfer in AOM. In this model, methyl sulfides produced by the Archaea from both CH4 oxidation and CO2 reduction are transferred to the SRB. Metabolically, CH4 oxidation provides electrons for the energy-yielding reduction of CO2 to a methyl group ('methylogenesis'). Methylogenesis is a dominantly reductive pathway utilizing most methanogenesis enzymes in their forward direction. Incubations of seep sediments demonstrate, as would be expected from this model, that methanethiol inhibits AOM and that CO can be substituted for CH4 as the electron donor for methylogenesis.  相似文献   

20.
Abstract: The purpose of the study was to define the potential for reductive acetogenesis of colonic microflora from six non-methane- and four methane-excreting human subjects in relation to numbers of the different H2-utilizing microorganisms. Faecal bacterial suspensions were incubated in the presence of NaH13CO3 and under a gas phase composed of either 100% N2 (control) or 80% H2–20% N2. The effects of a specific methanogenesis inhibitor or of sulfate supplementation were also determined. Quantitative nuclear magnetic resonance showed the presence of both single- and double-labelled acetate in all incubations under hydrogen. H2/CO2-acetogenesis appears to be a quantitatively important activity only in the presence of very low numbers of methanogens. Inhibition of methanogenesis induced a large increase in 13CO2 incorporation into acetate in CH4-producing samples. These results showed that methanogens can efficiently outcompete acetogens in human colonic contents. In contrast, no clear-cut competition for H2 between acetogenesis and dissimilatory sulfate-reduction could be demonstrated. A slight reduction of the acetogenic activity was only observed at the highest sulfate addition (100 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号