首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convective transport of therapeutic agents in solid tumors can be improved through intratumoral infusion. To optimize the convection, we investigated the dependence of the hydraulic conductivity on tissue deformation induced by interstitial fluid pressure gradient during the infusion. Two experimental systems were used in the investigation: 1) one-dimensional perfusion through tumor slices and 2) intratumoral infusion using a needle. With these systems, we found that the apparent hydraulic conductivity (K(app)) could be altered by several orders of magnitude in fibrosarcomas through changes in perfusion conditions. When the perfusion pressure was less than a threshold level, fluid flow in tissues could not be detected. When the perfusion pressure was increased above the threshold level, K(app) depended on perfusion system and pressure. The maximum variation in K(app) in fibrosarcomas reached 80,260-fold in our experiments. The large variation in K(app) could be explained by perfusion pressure-induced tissue deformation. These experimental data suggest that the hydraulic conductivity is very sensitive to tissue deformation and imply that it is possible to improve intratumoral infusion of therapeutic agents through optimization of infusion conditions.  相似文献   

2.
A nonlinear, coupled biphasic-mass transport model that includes transvascular fluid exchange is proposed for flow-controlled infusions in brain tissue. The model accounts for geometric and material nonlinearities, a hydraulic conductivity dependent on deformation, and transvascular fluid exchange according to Starling’s law. The governing equations were implemented in a custom-written code assuming spherical symmetry and using an updated Lagrangian finite-element algorithm. Results of the model indicate that, using normal physiological values of vascular permeability, transvascular fluid exchange has negligible effects on tissue deformation, fluid pressure, and transport of the infused agent. As vascular permeability may be increased artificially through methods such as administering nitric oxide, a parametric study was conducted to determine how increased vascular permeability affects flow-controlled infusion. Increased vascular permeability reduced both tissue deformation and fluid pressure, possibly reducing damage to tissue adjacent to the infusion catheter. Furthermore, the loss of fluid to the vasculature resulted in a significantly increased interstitial fluid concentration but a modestly increased tissue concentration. From a clinical point of view, this increase in concentration could be beneficial if limited to levels below which toxicity would not occur. However, the modestly increased tissue concentration may make the increase in interstitial fluid concentration difficult to assess in vivo using co-infused radiolabeled agents.  相似文献   

3.
Interstitial fluid movement is intrinsically linked to lymphatic drainage. However, their relationship is poorly understood, and associated pathologies are mostly untreatable. In this work we test the hypothesis that bulk tissue fluid movement can be evaluated in situ and described by a linear biphasic theory which integrates the regulatory function of the lymphatics with the mechanical stresses of the tissue. To accomplish this, we develop a novel experimental and theoretical model using the skin of the mouse tail. We then use the model to demonstrate how interstitial–lymphatic fluid movement depends on a balance between the elasticity, hydraulic conductivity, and lymphatic conductance as well as to demonstrate how chronic swelling (edema) alters the equipoise between tissue fluid balance parameters. Specifically, tissue fluid equilibrium is perturbed with a continuous interstitial infusion of saline into the tip of the tail. The resulting gradients in tissue stress are measured in terms of interstitial fluid pressure using a servo-null system. These measurements are then fit to the theory to provide in vivo estimates of the tissue hydraulic conductivity, elastic modulus, and overall resistance to lymphatic drainage. Additional experiments are performed on edematous tails to show that although chronic swelling causes an increase in the hydraulic conductivity, its greatly increased distensibility (due to matrix remodeling) dampens the driving forces for fluid movement and leads to fluid stagnation. This model is useful for examining potential treatments for edema and lymphatic disorders as well as substances which may alter tissue fluid balance and/or lymphatic drainage.  相似文献   

4.
The insertion of an endovascular prosthesis is known to have a thrombogenic effect that is also a consequence of the interaction between the flowing blood and the stented arterial segment; in fact the prosthesis induces a compliance mismatch and a possible small expansion along the vessel that eventually gives rise to an anomalous distribution of wall shear stresses. The fluid dynamics inside a rectilinear elastic vessel with compliance and section variation is studied here numerically. A recently introduced perturbative approach is employed to model the interaction between the fluid and the elastic tissue; this approximate technique is first validated by comparison with a complete solution within a simple one-dimensional model of the same system. Then it is applied to an axisymmetric model in order to evaluate the flow dynamics and the distribution of wall shear stress in the stented vessel. Compliance mismatch is shown to produce more intense negative wall shear stresses in the stented segment while rapid variations of wall shear stress are found at the stent ends. These effects are enhanced when the prosthesis is accompanied by a small increase of the vessel lumen.  相似文献   

5.
Using mixture theory, an axisymmetric continuum model is presented describing the response dynamics of the vestibular semicircular canals to canal-centered head rotation in which the cupula partition is modeled as a poroelastic mixture of interpenetrating solid and fluid constituents. The solid matrix of the cupula is assumed to behave as a linear elastic material, whereas the fluid constituent is assumed to be Newtonian. A regular perturbation analysis of the fluid dynamics in the canal provides a dynamic boundary condition, which acts across the cupula partition. Numerical solution of the coupled system of momentum equations provides the spatio-temporal displacement fields for both the fluid and solid constituents of the cupula. Results indicate that at frequencies above 1 Hz, the fluid constituent is dynamically entrained by the solid matrix such that their motions are bound as if to exist as a single component. The resulting high-frequency response is consistent with the macromechanical response predicted by single-component viscoelastic models of the cupula. Below 1 Hz, the dynamic coupling between the fluid and solid constituents weakens and the transcupular differential pressure is sufficient to force fluid through the mixture with little deformation of the solid matrix. Results are sensitive to the precise value of the cupular permeability. One of the most important distinctions between the present analysis and previous impermeable models of the cupula arises at the micromechanical level in terms of the local fluid flow that is predicted to occur within the cupula and around the ciliary bundles and sensory hair cells. Another important result reveals that the permeation dynamics predicted below 1 Hz gives rise to the same low-frequency macromechanical response as would occur with an impermeable viscoelastic structure having a much greater stiffness. Current estimates of the mechanical stiffness of the cupula, based solely on afferent nerve data, may therefore overestimate the true value intrinsic to the solid matrix by as much as an order of magnitude.  相似文献   

6.
7.
8.
The mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure.  相似文献   

9.
Bacteria can exist within biofilms that are attached to the solid matrix of a porous medium. Under certain conditions, the biomass can fully occupy the pore space leading to reduced hydraulic conductivity and mass transport. Here, by treating biofilm as a growing, high-viscosity phase, a novel macroscopic approach to model biofilm spatial expansion and its corresponding effects on porous medium hydraulic properties is presented. The separate yet coupled flow of the water and biofilm phases is handled by using relative permeability curves that allow for biofilm movement within the porous medium and bioclogging effects. Fluid flow is governed by Darcy's law and component transport is set by the convection-diffusion equation reaction terms for each component. Here, the system of governing equations is solved by using a commercial multiphase flow reservoir simulator, which is used to validate the model against published laboratory experiments. A comparison of the model and experimental observations reveal that the model provides a reasonable means to predict biomass development in the porous medium. The results reveal that coupled flow of water and movement of biofilm, as described by relative permeability curves, is complex and has a large impact on the development of biomass and consequent bioclogging in the porous medium.  相似文献   

10.
The volumetric elastic modulus of the cell wall and the hydraulic conductivity of the cell membranes were measured on ligatured compartments of different sizes of Chara corallina internodes using the pressure probe technique. The ratio between intact cell surface area and the area of puncture in the cell wall and membrane introduced by the microcapillary of the pressure probe was varied over a large range by inserting microcapillaries of widely varying diameters in different sized compartments. The relationship of the elastic modulus and the hydraulic conductivity to turgor pressure was independent of the ratio of intact cell surface area to the area of injury. The increase in the hydraulic conductivity below 2 bar turgor pressure and the volume dependence of the elastic modulus were shown to be the same as those observed in intact nonligatured cells. Theoretical considerations of the possible influence of injury of the cell wall and cell membrane around the inserted microcapillary on the measurement of the water transport and cell wall parameters do not explain the experimental findings. Thus, mechanical artifacts, if at all present, are too small to account for the observed dependence of the hydraulic conductivity and the elastic modulus on turgor pressure. The pressure probe technique thus represents an accurate method for measuring water transport parameters in both giant algal cells and in tissue cells of higher plants.  相似文献   

11.
ABSTRACT: Tumor shape and size effect on drug delivery to solid tumors are studied, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for predefined tumor geometries. The governing equations are solved using a numerical method, the element-based finite volume method. Interstitial fluid pressure and velocity are used to show the details of drug delivery in a solid tumor, under an assumption that drug particles flow with the interstitial fluid. Drug delivery problems have been most extensively researched in spherical tumors, which have been the simplest to examine with the analytical methods. With our numerical method, however, more complex shapes of the tumor can be studied. The numerical model of fluid flow in solid tumors previously introduced by our group is further developed to incorporate and investigate non-spherical tumors such as prolate and oblate ones. Also the effects of the surface area per unit volume of the tissue, vascular and interstitial hydraulic conductivity on drug delivery are investigated.  相似文献   

12.
A general continual model of a medium composed of mechanically active cells is proposed. The medium is considered to be formed by three phases: cells, extracellular fluid, and an additional phase that is responsible for active interaction forces between cells and, for instance, may correspond to a system of protrusions that provide the development of active contractile forces. The deformation of the medium, which is identified with the deformation of the cell phase, consists of two components: elastic deformation of individual cells and cell rearrangements. The elastic deformation is associated with stresses in the cell phase. The spherical component of the stress tensor describes the nonlinear resistance of the cellular medium, which leads to the impossibility of its excessive compression. The constitutive equation for pressure in the cell phase is taken in the form of a nonlinear dependence on the volume cell density. The rearrangement of cells is considered as a flow controlled by stresses in the cell phase, active stresses, and fluid pressure. The tensor of active stresses is assumed to be spherical and nonlocally dependent on the cell density. Assuming that the process of biological tissue deformation is slow, we obtained a reduced model that neglects the elastic deformation of cells, compared to the inelastic deformation. A linear stability analysis of a spatially uniform steady-state solution was performed. The hydrostatic pressure of fluid is present among the parameters that are responsible for the loss of stability of the steady-state solution: an increase in it has a destabilizing effect owing to the action of the component of the interphase interaction force that is determined by the fluid pressure. The model we obtained can be used to describe the process of cavity formation in an initially homogeneous cell spheroid. The role of local and nonlocal mechanisms of active stress generation in the formation of cavity is investigated.  相似文献   

13.
The stiffness and hydraulic permeability of soft contact lenses may influence its clinical performance, e.g., on-eye movement, fitting, and wettability, and may be related to the occurrence of complications; e.g., lesions. It is therefore important to determine these properties in the design of comfortable contact lenses. Micro-indentation provides a nondestructive means of measuring mechanical properties of soft, hydrated contact lenses. However, certain geometrical and material considerations must be taken into account when analyzing output force-displacement (F-D) data. Rather than solely having a solid response, mechanical behavior of hydrogel contact lenses can be described as the coupled interaction between fluid transport through pores and solid matrix deformation. In addition, indentation of thin membranes ( approximately 100 microm) requires special consideration of boundary conditions at lens surfaces and at the indenter contact region. In this study, a biphasic finite element model was developed to simulate the micro-indentation of a hydrogel contact lens. The model accounts for a curved, thin hydrogel membrane supported on an impermeable mold. A time-varying boundary condition was implemented to model the contact interface between the impermeable spherical indenter and the lens. Parametric studies varying the indentation velocities and hydraulic permeability show F-D curves have a sensitive region outside of which the force response reaches asymptotic limits governed by either the solid matrix (slow indentation velocity, large permeability) or the fluid transport (high indentation velocity, low permeability). Using these results, biphasic properties (Young's modulus and hydraulic permeability) were estimated by fitting model results to F-D curves obtained at multiple indentation velocities (1.2 and 20 microm/s). Fitting to micro-indentation tests of Etafilcon A resulted in an estimated permeability range of 1.0 x 10(-15) to 5.0 x 10(-15) m(4)N s and Young's modulus range of 130 to 170 kPa.  相似文献   

14.
Convection-enhanced delivery (CED) is a drug delivery technique used to target specific regions of the central nervous system (CNS) for the treatment of neurodegenerative diseases and cancer while bypassing the blood-brain barrier (BBB). The application of CED is limited by low volumetric flow rate infusions in order to prevent the possibility of backflow. Consequently, a small convective flow produces poor drug distribution inside the treatment region, which can render CED treatment ineffective. Novel catheter designs and CED protocols are needed in order to improve the drug distribution inside the treatment region and prevent backflow. In order to develop novel backflow-free catheter designs, the impact of the micro-fluid injection into deformable porous media was investigated experimentally as well as numerically. Fluid injection into the porous media has a considerable effect on local transport properties such as porosity and hydraulic conductivity because of the local media deformation. These phenomena not only alter the bulk flow velocity distribution of the micro-fluid flow due to the changing porosity, but significantly modify the flow direction, and even the volumetric flow distribution, due to induced local hydraulic conductivity anisotropy. These findings help us to design backflow-free catheters with safe volumetric flow rates up to 10 μl/min. A first catheter design reduces porous media deformation in order to improve catheter performance and control an agent volumetric distribution. A second design prevents the backflow by reducing the porosity and hydraulic conductivity along a catheter's shaft. A third synergistic catheter design is a combination of two previous designs. Novel channel-inducing and dual-action catheters, as well as a synergistic catheter, were successfully tested without the occurrence of backflow and are recommended for future animal experiments.  相似文献   

15.
A biphasic nonlinear mathematical model is proposed for the concomitant fluid transport and tissue deformation that occurs during constant flow rate infusions into brain tissue. The model takes into account material and geometrical nonlinearities, a hydraulic conductivity dependent on strain, and nonlinear boundary conditions at the infusion cavity. The biphasic equations were implemented in a custom written code assuming spherical symmetry and using an updated Lagrangian finite element algorithm. Results of the model showed that both, geometric and material nonlinearities play an important role in the physics of infusions, yielding important differences from infinitesimal analyses. Geometrical nonlinearities were mainly due to the significant enlargement of the infusion cavity, while variations of the parameters that describe the degree of nonlinearity of the stress–strain curve yielded significant differences in all distributions. For example, a parameter set showing stiffening under tension yielded maximum values of radial displacement and porosity not localized at the infusion cavity. On the other hand, a parameter set showing softening under tension yielded a slight decrease in the fluid velocity for a three-fold increase in the flow rate, which can be explained by the substantial increase of the infusion cavity, not considered in linear analyses. This study strongly suggests that significant enlargement of the infusion cavity is a real phenomenon during infusions that may produce collateral damage to brain tissue. Our results indicate that more experimental tests have to be undertaken in order to determine material nonlinearities of brain tissue over a range of strains. With better understanding of these nonlinear effects, clinicians may be able to develop protocols that can minimize the damage to surrounding tissue.  相似文献   

16.
Cryopreservation of engineered tissue (ET) has achieved limited success due to limited understanding of freezing-induced biophysical phenomena in ETs, especially fluid-matrix interaction within ETs. To further our understanding of the freezing-induced fluid-matrix interaction, we have developed a biphasic model formulation that simulates the transient heat transfer and volumetric expansion during freezing, its resulting fluid movement in the ET, elastic deformation of the solid matrix, and the corresponding pressure redistribution within. Treated as a biphasic material, the ET consists of a porous solid matrix fully saturated with interstitial fluid. Temperature-dependent material properties were employed, and phase change was included by incorporating the latent heat of phase change into an effective specific heat term. Model-predicted temperature distribution, the location of the moving freezing front, and the ET deformation rates through the time course compare reasonably well with experiments reported previously. Results from our theoretical model show that behind the marching freezing front, the ET undergoes expansion due to phase change of its fluid contents. It compresses the region preceding the freezing front leading to its fluid expulsion and reduced regional fluid volume fractions. The expelled fluid is forced forward and upward into the region further ahead of the compression zone causing a secondary expansion zone, which then compresses the region further downstream with much reduced intensity. Overall, it forms an alternating expansion-compression pattern, which moves with the marching freezing front. The present biphasic model helps us to gain insights into some facets of the freezing process and cryopreservation treatment that could not be gleaned experimentally. Its resulting understanding will ultimately be useful to design and improve cryopreservation protocols for ETs.  相似文献   

17.
Modeling passive mechanical interaction between aqueous humor and iris.   总被引:3,自引:0,他引:3  
Certain forms of glaucoma are associated with displacement of the iris from its normal contour. We present here a mathematical model of the coupled aqueous humor-iris system that accountsfor the contribution of aqueous humor flow and passive iris deformability to the iris contour. The aqueous humor is modeled as a Newtonian fluid, and the iris is modeled as a linear elastic solid. The resulting coupled equation set is solved by the finite element method with mesh motion in response to iris displacement accomplished by tracking a pseudo-solid overlying the aqueous humor. The model is used to predict the iris contour in healthy and diseased eyes. The results compare favorably with clinical observations, supporting the hypothesis that passive iris deformation can produce the iris contours observed using ultrasound biomicroscopy.  相似文献   

18.
This paper presents an elastohydrodynamic model of the human eyelid wiper. Standard lubrication theory is applied to the fluid layer between the eyelid wiper and ocular surface. The role of the lubrication film is to reduce the shear stresses by preventing solid to solid contact between the eyelid wiper and ocular surface. For the lubrication film to be effective, it is required that the orientation of the eyelid wiper changes between the opening and closing phases of a blink. In order to model this, the hydrodynamic model is coupled with an elastic mattress model for the soft tissue of the eyelid wiper and ocular surface. This leads to a one-dimensional non-linear partial differential equation governing the fluid pressure in the lubrication film. In order to solve the differential equation, a loading condition or constraint equation must be specified. The resulting system is then solved numerically. The model allows predictions of the tear film flux from under the upper eyelid, as well as normal and shear stresses acting on the ocular surface. These factors are important in relation to dry eye syndrome, deformation of the cornea and contact lens design. It is found that the pressure and shear stress under the eyelid act across a length of approximately 0.1 mm which is consistent with clinical observations. It order to achieve a flow of tears from under the upper eyelid during a blink, the model requires that the normal force the eyelid applies to the ocular surface during the closing phase of the blink is significantly higher than during the opening phase of the blink. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
In order to better understand the effect of initial stress in blood flow in arteries, a theoretical analysis of wave propagation in an initially inflated and axially stretched cylindrical thick shell is investigated. For simplicity in the mathematical analysis, the blood is assumed to be an incompressible inviscid fluid while the arterial wall is taken to be an isotropic, homogeneous and incompressible elastic material. Employing the theory of small deformations superimposed on a large initial field the governing differential equations of perturbed solid motions are obtained in cylindrical polar coordinates. Considering the difficulty in obtaining a closed form solution for the field equations, an approximate power series method is utilized. The dispersion relations for the most general case of this approximation and for the thin tube case are thoroughly discussed. The speeds of waves propagating in an unstressed tube are obtained as a special case of our general treatment. It is observed that the speeds of both waves increase with increasing inner pressure and axial stretch.  相似文献   

20.
The present work addresses transvascular and interstitial fluid transport inside a solid tumor surrounded by normal tissue (close to an in vivo mimicking setup). In general, biological tissues behave like a soft porous material and show mechanical behavior towards the fluid motion through the interstitial space. In general, forces like viscous drag that are associated with the fluid flow may compress the tissue material. On the macroscopic level, we try to model the motion of fluids and macromolecules through the interstitial space of solid tumor and the normal tissue layer. The transvascular fluid transport is assumed to be governed by modified Starling’s law. The poroelastohydrodynamics (interstitial hydrodynamics and the deformation of tissue material) inside the tumor and normal tissue regions is modeled using linearized biphasic mixture theory. Correspondingly, the velocity distribution of fluid is coupled to the displacement field of the solid phase (mainly cellular phase and extracellular matrix) in both the normal and tumor tissue regions. The corresponding velocity field is used within the transport reaction equation for fluids and macromolecules through interstitial space to get the overall solute (e.g., nutrients, drug, and other macromolecules) distribution. This study justifies that the presence of the normal tissue layer plays a significant role in delaying/assisting necrosis inside the tumor tissue. It is observed that the exchange process of fluids and macromolecules across the interface of the tumor and normal tissue affects the effectiveness factor corresponding to the tumor tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号