首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas stutzeri AN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events.  相似文献   

2.
Mycoplasma wenyonii is a hemotrophic mycoplasma that causes acute and chronic infections in cattle. Here, we announce the first complete genome sequence of this organism. The genome is a single circular chromosome with 650,228 bp and G+C% of 33.9. Analyses of M. wenyonii genome will provide insights into its biology.  相似文献   

3.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

4.
C Gao  C Hu  C Ma  F Su  H Yu  T Jiang  P Dou  Y Wang  T Qin  M Lv  P Xu 《Journal of bacteriology》2012,194(17):4751-4752
Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.  相似文献   

5.
Here we report the genome sequence of a plant growth-promoting rhizobacterium, Pseudomonas putida S11. The length of the draft genome sequence is approximately 5,970,799 bp, with a G+C content of 62.4%. The genome contains 6,076 protein-coding sequences.  相似文献   

6.
Mycoplasma hyorhinis is generally considered a swine pathogen yet is most commonly found infecting laboratory cell lines. An increasing body of evidence suggests that chronic infections with M. hyorhinis may cause oncogenic transformation. Here, we announce the complete genome sequence of M. hyorhinis strain HUB-1.Mycoplasma hyorhinis is generally considered to be a swine pathogen causing lung lesions, inflammation in the chest and abdominal lining, and arthritis (8). This agent also frequently contaminates laboratory cell cultures, impinging on many aspects of biological research (3). Recent studies have demonstrated that M. hyorhinis infections induce a malignant phenotype in human prostate (7) and gastric (4) cells, suggesting that M. hyorhinis infections are associated with oncogenic transformation. These properties of M. hyorhinis have increased its profile to researchers. The complete genome sequence of this microbe has yet to be determined.We sequenced the genome of M. hyorhinis strain HUB-1, a pathogenic strain isolated from the respiratory tract of swine. Whole-genome sequencing was performed by combining GS FLX (6) and Solexa paired-end sequencing technologies (1). Genomic libraries containing 3-kb inserts were constructed, and 308,604 reads (79.7% paired end) were produced using the GS FLX system, giving 65.9-fold coverage of the genome. About 93.4% of reads were assembled into one large scaffold using Newbler software (454 Life Sciences, Branford, CT). A total of 822,579 reads were generated using an Illumina Solexa Genome Analyzer IIx and were mapped to the scaffold using the Burrows-Wheeler alignment (BWA) tool (5). Gaps were filled by local assembly of the Solexa/Roche 454 reads or by sequencing PCR products by using an ABI 3730 capillary sequencer. Open reading frames containing more than 30 amino acid residues were predicted using Glimmer 3.0 (2) and verified by comparison with six other closely related genome sequences.The complete genome of M. hyorhinis HUB-1 consists of an 839,615-bp single circular chromosome with an average G+C content of 25.88%. A total of 654 protein-encoding genes are predicted. The average protein size is 364 amino acids, and the mean coding percentage is 85.2%. The genome includes 30 tRNA genes, and only a single copy of the 16S-23S rRNA operon can be found. The 5S rRNA operon is separate from the 16S-23S rRNA operon. Protein secretion occurs through a truncated membrane protein secretion system, consisting of SecA, SecD, SecY, PrsA, DnaK, Tig, and LepA. Additionally, 20 pseudogenes, which become truncated or inactivated, are identified in the genome.M. hyorhinis contains a special variable lipoprotein (Vlp) system that constitutes its major coat protein (9) and provides a mutational strategy for evasion of the host immune system. Different M. hyorhinis strains carry a variable number of vlp genes (9). M. hyorhinis HUB-1 is characterized to contain seven vlp genes displayed in the order 5′-vlpD-vlpE-vlpF-insertion sequence (IS)-vlpG-vlpA-IS-vlpB-vlpC-3′.This is the first complete genome sequence of M. hyorhinis, and its availability will provide a better-defined genetic background for future studies of gene expression and regulation.  相似文献   

7.
We report the complete genome sequence of Pseudomonas aeruginosa siphophage MP1412, which displays synteny to those of P. aeruginosa phages M6 and YuA. However, the presence of two homing endonucleases of the GIY-YIG family is unique to MP1412, suggesting their unique role in the phage life cycle of the bacterial host.  相似文献   

8.
Complete Genome Sequence of Streptococcus thermophilus Strain MN-ZLW-002   总被引:1,自引:0,他引:1  
X Kang  N Ling  G Sun  Q Zhou  L Zhang  Q Sheng 《Journal of bacteriology》2012,194(16):4428-4429
Streptococcus thermophilus MN-ZLW-002 was originally isolated from traditionally fermented Chinese dairy products. One of the strain-dependent characteristics of this bacterium is its ability to produce exopolysaccharides (EPSs). This study determined and analyzed the genome sequence of MN-ZLW-002. Its complete genome comprised 2,046 genes and 1,848,520 nucleotides with an average GC content of 39%. The EPS cluster of MN-ZLW-002 includes 25 open reading frames (ORFs), and some results indicate a horizontal gene transfer between MN-ZLW-002 and other lactic acid bacteria (LAB).  相似文献   

9.
Here we announce the complete genome sequence of the symbiotic and nitrogen-fixing bacterium Sinorhizobium fredii USDA257. The genome shares a high degree of sequence similarity with the closely related broad-host-range strains S. fredii NGR234 and HH103. Most strikingly, the USDA257 genome encodes a wealth of secretory systems.  相似文献   

10.
Pseudomonas putida strain S12, a well-studied solvent-tolerant bacterium, is considered a platform strain for the production of many chemicals. Here, we present a 6.28-Mb assembly of its genome sequence. We have annotated 32 coding sequences (CDSs) encoding efflux systems of organic compounds and 195 CDSs responsible for the metabolism of aromatic compounds.  相似文献   

11.
Alcanivorax dieselolei B5T was isolated from oil-contaminated surface water of the Bohai Sea of China and characterized by the efficient degradation of alkane (C5-C36). Here we report the complete genome of B5T and genes associated with alkane degradation.  相似文献   

12.
Porcine circovirus type 2 (PCV2) is the etiologic agent of porcine circovirus-associated disease, and it is mainly divided into five genotypes. Here, we report the complete genome sequence of PCV2 strain GDYX, which belongs to PCV2d and has a unique amino acid variation at position 169 (S to G).  相似文献   

13.
Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.  相似文献   

14.
Bacillus thuringiensis has been widely used as a biopesticide for a long time. Here we report the finished and annotated genome sequence of B. thuringiensis mutant strain BMB171, an acrystalliferous mutant strain with a high transformation frequency obtained and stocked in our laboratory.Bacillus thuringiensis is an insect pathogen which is widely used as a biopesticide due to its various endogenous crystal proteins and spores (12). To improve the virulence and practical effectiveness of B. thuringiensis, genetic transformation of different genes with beneficial traits is a fundamental procedure. Simultaneously, genetic transformation can facilitate functional genomic research. However, wild-type strains are not suitable to be used as recipient strains because of low transformation efficiency. This obstacle is mainly caused by the thick cell wall layer of B. thuringiensis together with multiple plasmids inside the cell, which harbor genes encoding insecticidal crystal proteins. We used the method of elevating the growth temperature and adding 0.05% sodium dodecyl sulfate to treat several parental strains and finally obtained mutant strain BMB171, with no resident plasmid, from wild-type crystalliferous strain YBT-1463 (9). The electrotransformation frequency of mutant BMB171 could reach up to 107 transformants/μg DNA after optimization of the electrotransformation parameters (7), which was 4.8 × 104-fold higher than that of the parental strain (8). Moreover, mutant strain BMB171 exhibited the same characteristics as YBT-1463, such as metabolic abilities and growth properties, as well as sensitivity to 10 antibiotics (8). Of course, BMB171 could produce parasporal crystals with characteristic geometric shapes through the expression of relevant cry genes carried by plasmids (7). Thus, B. thuringiensis mutant strain BMB171 has become a major recipient strain and is widely used for insecticidal crystal protein-encoding gene expression (14, 15), cell surface display (10, 13), gene function and regulation researches (2, 5), etc.The B. thuringiensis mutant strain BMB171 genome was sequenced by using a massive parallel pyrosequencing technology (454 GS-FLX). A total of 448,963 high-quality reads with an average read length of 391 bp were produced, providing about 32-fold coverage of the genome. Assembly was performed using the Newbler software of the 454 suite package (454 Life Sciences), which resulted in 193 large (defined as >500 bp) contigs. The relationship of contigs was determined by multiplex PCR, and gaps were filled through sequencing of PCR products by primer walking or shotgun sequencing with an ABI 3730 sequencer. The Phred/Phrap/Consed software package (3) was used for final sequence assembly and quality assessment. Protein-coding genes were predicted by combining the results of Glimmer 3.02 (1) and ZCURVE (4), followed by manual inspection. Both tRNA and rRNA genes were identified by tRNAscan-SE (11) and RNAmmer (6), respectively. Functional annotation was performed by searching against a protein database of the microbial genome developed in house.The 5.64-Mb genome of B. thuringiensis mutant strain BMB171 contains two replicons: a circular chromosome (5.33 Mb) encoding 5,088 open reading frames (ORFs) and a circular plasmid (0.31 Mb), which is named pBMB171, encoding 276 predicted ORFs. The G+C content of the chromosome is 35.3%, while that of the plasmid is 33.3%. The mutant strain BMB171 genome encodes 104 tRNAs and 14 rRNA operons. A previous study indicated that BMB171 is a plasmid-free mutant (9); however, our sequencing results demonstrated that a large plasmid still remains. The reason why the plasmid was not detected previously might be its large size and low copy number. We did not find any crystal protein genes in either chromosome or plasmid sequences, which was consistent with previous observations (9).In summary, the complete B. thuringiensis mutant strain BMB171 genome provides a better-defined genetic background for gene expression and regulation studies, especially crystal protein production and metabolic network construction.  相似文献   

15.
The catechol 2,3-dioxygenase (C23O) gene in naphthalene catabolic plasmid pND6-1 of Pseudomonas sp. ND6 was cloned and sequenced. The C23O gene was consisted of 924 nucleotides and encoded a polypeptide of molecular weight 36 kDa containing 307 amino acid residues. The C23O of Pseudomonas sp. ND6 exhibited 93% and 89% identities in amino acid sequence with C23Os encoded by naphthalene catabolic plasmid NAH7 from Pseudomonas putida G7 and the chromosome of Pseudomonas stutzeri AN10 respectively. The Pseudomonas sp. ND6 C23O gene was overexpressed in Escherichia coli DH 5α using the lac promoter of pUC18, and its gene product was purified by DEAE-Sephacel and Phenyl-Sepharose CL-4B chromatography. The enzymology experiments indicated that the specific activity and thermostability of C23O from Pseudomonas sp. ND6 were better than those of C23O from Pseudomonas putida G7.  相似文献   

16.
R Liang  H Liu  F Tao  Y Liu  C Ma  X Liu  J Liu 《Journal of bacteriology》2012,194(17):4781-4782
Pseudomonas putida strain SJTE-1 can utilize 17β-estradiol and other environmental estrogens/toxicants, such as estrone, and naphthalene as sole carbon sources. We report the draft genome sequence of strain SJTE-1 (5,551,505 bp, with a GC content of 62.25%) and major findings from its annotation, which could provide insights into its biodegradation mechanisms.  相似文献   

17.
The genus Acinetobacter is ubiquitous in soil, aquatic, and sediment environments and includes pathogenic strains, such as A. baumannii. Many Acinetobacter species isolated from various environments have biotechnological potential since they are capable of degrading a variety of pollutants. Acinetobacter sp. strain DR1 has been identified as a diesel degrader. Here we report the complete genome sequence of Acinetobacter sp. DR1 isolated from the soil of a rice paddy.The genus Acinetobacter appears to be metabolically versatile and has the ability to degrade aliphatic hydrocarbon, thus making it an organism of interest for its possible bioremediational potential (9). Despite its biotechnological potential, the majority of genome projects conducted with Acinetobacter species have focused on pathogenic strains of A. baumannii. Currently, the only available whole-genome sequence of environmental isolates is that of A. baylyi ADP1 (2). Acinetobacter sp. strain DR1 was isolated from the soil of rice paddies, located in Deok-So (Korea University Agricultural Station), in the Kyonggi province of South Korea. Strain DR1 is capable of utilizing aliphatic hydrocarbons and diesel oil (5). Similarly to A. baylyi ADP1, this strain is also competent for natural transformation. We demonstrated previously that sodium chloride added to the medium induces the overproduction of exopolysaccharide (EPS), which evidences protective activity against diesel toxicity (4). Interestingly, DR1 possesses a quorum sensing (QS) system, which has been shown to play a significant role in biofilm formation and hexadecane biodegradation. The results of proteomic studies have demonstrated that the QS system regulates a broad variety of proteins (6). Collectively, our findings demonstrate that DR1 has profound potential for environmental applications and is an environmental isolate distinct from pathogenic strains, thus indicating that the whole-genome sequencing of DR1 is a worthwhile pursuit.Initial pyrosequencing using a GS-FLX system (454 Life Science Corporation) generated 652,162 reads (264,482,836 nucleotides; 64.3-fold coverage), which were assembled into 56 contigs. To determine the order of the contigs, 1,248 fosmid clones were constructed with an average insert size of 35 kb (10.5-fold coverage). The fosmid-end sequencing of 936 clones generated 1,372,452 bp. These high-quality Sanger reads allowed the assembly of 41 large contigs into 2 scaffolds containing 38 gaps. The gaps were filled via primer walking. All procedures for genome sequencing and gap filling were conducted by Macrogen (Seoul, South Korea). Protein coding regions were predicted with the GLIMMER3 software program (3), and automatic genome annotation was conducted on a RAST server (1) and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP). The tRNA and rRNA genes were annotated using the tRNAScan-SE (8) and RNAmmer software programs (7), respectively. The genome of Acinetobacter sp. DR1 consists of a circular 4,152,543-bp chromosome with a G+C content of 38%, 3,874 predicted coding sequences, and 71 tRNAs. There are 6 rRNA operons with a 16S, tRNA-Ile, tRNA-Ala, 23S, 5S organization. The genes studied previously were clearly identified via genome sequencing (4, 5, 6). The availability of the complete genome sequence of Acinetobacter sp. strain DR1 will contribute to an in-depth understanding of the genetic potentials of Acinetobacter species.  相似文献   

18.
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related enterobacteria revealed signs of pathoadaptation to rosaceous hosts.Erwinia amylovora, a plant-associated member of the Enterobacteriaceae, causes fire blight, a devastating disease of rosaceous plants, especially pear and apple (6). The complete genome of Ea273 (ATCC 49946), a virulent strain isolated from an infected apple tree in New York State, was sequenced. Total DNA was extracted and prepared in pMAQ1 shotgun libraries. The complete shotgun sequence was obtained by using dye terminator chemistry in ABI 3730 automated sequencers and contains 88,457 reads (11.12-fold coverage), yielding a theoretical coverage of the genome of 99.99%. The sequence was assembled, finished, and annotated as described previously (1, 5), using Artemis (4) to collate data and facilitate annotation.The genome of E. amylovora consists of a circular chromosome of 3,805,874 bp and two plasmids, AMYP1 (28,243 bp) and AMYP2 (71,487 bp). Coding regions in the chromosome account for 85.1% of the total sequence, with 3,483 identified coding sequences (CDS). Two hundred fifty-four (7%) of the CDSs do not have any matches in current NCBI databases; 114 (3.3%) correspond to conserved hypothetical proteins. Forty-nine CDSs (1.4%) are similar to genes from mobile elements such as integrases, transposases, and bacteriophages, and 110 CDSs (3.2%) were classified as pseudogenes due to interruptions or truncations of the CDSs. The remaining 2,956 annotated CDSs include among other categories genes involved in biosynthesis of the cellular envelope and modifications of surface proteins (299 CDSs [11%]) and genes involved in signal transduction and regulation (228 CDSs [8%]). Seven rRNA operons and 78 tRNA sequences were identified in the chromosome; two new clusters were identified (AMY1550-1575 and AMY2648-2676) that resemble the T3SS-encoding SSR-1 island of Sodalis glossinidius (2), and four clusters that contain genes for biosynthesis of flagella, which based on their location might be regulated independently.The smaller plasmid, AMYP1, had been reported as pEA29 (3); its sequence is nearly identical to the one reported here. The larger plasmid, AMYP2, renamed pEA72 for consistency in nomenclature, contains 87 predicted CDSs, with two predicted mobile-element-related CDSs and one pseudogene. Among the CDSs with annotated functions are a cluster of genes (AMYP2_49 to AMYP2_62) that encode a putative type IV fimbrial system (pil genes).The genome of E. amylovora is only 3.8 Mb long, whereas most free-living enterobacteria, including plant pathogens, have genomes of 4.5 Mb to 5.5 Mb. Comparison of the genome of Ea273 with the sequenced genomes of 15 closely related enterobacteria identified 21 lineage-specific regions, which might be considered genomic islands. E. amylovora has many more predicted pseudogenes, relative to other enterobacteria with similar lifestyles. Given its size and the preponderance of pseudogenes, genome reduction may have occurred via mutational inactivation and subsequent deletion with the following consequences: E. amylovora has fewer genes involved in anaerobic respiration and fermentation than are found in typical related enterobacteria; this likely result in a reduced capacity to live in anaerobic environments.The genome sequence of E. amylovora has revealed clear signs of pathoadaptation to the rosaceous plant environment. For example, T3SS-related proteins are present that are more similar to proteins of other plant pathogens than to proteins of closely related enterobacteria. These include type III effectors, homologous to those of plant-pathogenic pseudomonads, which confer virulence to E. amylovora in plants, and a sorbitol-metabolizing cluster that may confer a competitive advantage for survival in rosaceous plants. The reduced genome size and erosion or loss of genes involved in anaerobic respiration and nitrate assimilation are remarkable, relative to other plant- and animal-pathogenic members of the Enterobacteriaceae.  相似文献   

19.
DS Yu  H Jeong  DH Lee  SK Kwon  JY Song  BK Kim  MS Park  GE Ji  TK Oh  JF Kim 《Journal of bacteriology》2012,194(17):4757-4758
Bifidobacterium bifidum, a common endosymbiotic inhabitant of the human gut, is considered a prominent probiotic microorganism that may promote health. We completely decrypted the 2.2-Mb genome sequence of B. bifidum BGN4, a strain that had been isolated from the fecal sample of a healthy breast-fed infant, and annotated 1,835 coding sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号