首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of liposomes as delivery systems for peptide, protein and DNA vaccines is well-recognised, unfortunately their application has been stinted by their instability during storage and their limited shelf-life. Further, sterilisation of these systems has been problematic, with degradation of the liposomes being reported after sterilisation using the various techniques available. Work form our laboratory has investigated techniques that can be applied to particulate liposomal vaccines such that they can be prepared in a freeze-dried and sterile format. In this article, we describe techniques for the lyophilisation, cryoprotection and sterilisation of liposomal vaccines. Applying these methods allows for the retention of both the chemical integrity of the lipids and the key physico-chemical characteristics of the liposomes (e.g., particle size, zeta potential, and dynamic viscosity), thus supporting the enhanced transition of liposomal vaccines from the bench to the clinic.  相似文献   

2.
A comparative study between archaeosomes, lipid lamellar vesicles made from archaea polar lipids, and conventional phospholipids liposomes was carried out, aiming at evaluating the properties and the potential of archaeosomes as novel colloidal carriers for effective drug delivery to the skin. Betamethasone dipropionate (BMD)–loaded archaeosomes and conventional liposomes were prepared by the thin-lipid film and sonication procedures, using, respectively, archaeal lipids extracted from archaea Halobacterium salinarum and enriched soy phosphatidylcholine. Vesicular formulations were characterized by assessing vesicle size, zeta potential, incorporation efficiency, and morphology. In order to investigate the effect of the incorporation in the two different colloidal carrier systems on the (trans)dermal delivery of BMD, in vitro drug permeation studies through full-thickness pig skin were carried out by using Franz diffusion vertical cells by testing both archaeal and liposomal dispersions. Interestingly, archaeosomes appeared to be the most effective carriers for the model drug, achieveing a major drug penetration and accumulation in the skin strata, especially in the epidermis. This can, presumably, be due to the enhanced archaeosomal bilayer fluidity, as indicated by the rheological studies that provided insight into the viscoelastic properties of all the studied systems. The available data suggest that suitably developed archaeosomes may hold great promise as delivery vehicles for topical applications.  相似文献   

3.
A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50?nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.  相似文献   

4.
Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 ± 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH2 (at 2,800–3,000 cm−1) bands and the C=O (at 1,740 cm−1) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system.  相似文献   

5.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (-43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2-8°C for more than 3 months. IC(50) value of Ambisome (0.18 μg/mL) was comparatively similar to F-1a (0.17 μg/mL) and F-2a (0.16 μg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

6.
Although liposomal nanoparticles are one of the most versatile class of drug delivery systems, stable liposomal formulation of small neutral drug molecules still constitutes a challenge due to the low drug retention of current lipid membrane technologies. In this study, we evaluate the encapsulation and retention of seven nucleoside analog-based drugs in liposomes made of archaea-inspired tetraether lipids, which are known to enhance packing and membrane robustness compared to conventional bilayer-forming lipids. Liposomes comprised of the pure tetraether lipid generally showed improved retention of drugs (up to 4-fold) compared with liposomes made from a commercially available diacyl lipid. Interestingly, we did not find a significant correlation between the liposomal leakage rates of the molecules with typical parameters used to assess lipophilicity of drugs (such logD or topological polar surface area), suggesting that specific structural elements of the drug molecules can have a dominant effect on leakage from liposomes over general lipophilic character.  相似文献   

7.
Macrophage specific drug delivery in experimental leishmaniasis   总被引:1,自引:0,他引:1  
Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric nanoparticles have turned out to be the best and thus may be projected for effective use in the clinics.  相似文献   

8.
We have fabricated Lipogels consisting of a single POPC lipid bilayer supported by a micrometer-sized, thermoresponsive, hydrophobically modified (HM), hydrogel sphere. The hydrogel consists of a lightly cross-linked poly(N-isopropylacrylamide) (pNIPAM) core surrounded by a highly cross-linked acrylic acid (AA)-rich p(NIPAM-co-AA) shell. The lipid bilayer was assembled by binding liposomes to HM microgels, followed by several cycles of freeze-thaw. The pNIPAM volume phase transition (VPT) at ~32 °C was present both before and after hydrophobic modification and after lipid bilayer coating. Fluorescence studies confirmed the fusion of liposomes into a continuous single bilayer. At a temperature above the VPT, it was found that the volume decrease in the hydrogel was coupled to the appearance of highly curved obtrusions of the uncompromised lipid bilayer into the surroundings. It is anticipated that these properties of Lipogels will prove to be useful in drug delivery applications and in fundamental biophysical studies of membranes.  相似文献   

9.
Liposomes are potential drug carriers for pulmonary drug delivery: They can be prepared from phospholipids, which are endogenous to the respiratory tract as a component of pulmonary surfactant, and at an appropriate dose liposomes do not pose a toxicological risk to this organ. Among the various categories of drug that benefit from liposomal entrapment is the anti-inflammatory enzyme superoxide dismutase, thus prolonging its biological half-life. The delivery of liposomes by nebulization is hampered by stability problems, like physical and chemical changes that may lead to chemical degradation and leakage of the encapsulated drug. Here we present data of liposomes aerosolized with a novel electronic nebulizer based on a vibrating membrane technology (PARI eFlow), which amends drawbacks like liposomes degradation and product release. The data acquisition included aerosol properties such as aerodynamic particle size, nebulization efficiency, and liposome leakage upon nebulization. In conclusion, this study shows the ability of the PARI eFlow to nebulize high amounts of liposomal recombinant human superoxide dismutase with reduced vesicle disruption tested in an enclosing experimental protocol.  相似文献   

10.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are a well-known class of drug with beneficial therapeutic effects in cardiovascular disease and lipid disorders and have potential use against cancer. However, the bioavailability of statins is hampered due to low aqueous solubility and rapid metabolism. To improve pharmacokinetic profiles of statins, development of drug delivery systems is promising. Hence, the use of liposomes for selective delivery of statins to a selected site or for bioavailability enhancement is an effective strategy to increase statin therapeutic effects. Moreover, liposomal delivery can reduce the required dose of statins especially in terms of antitumor effects. Liposomes, because of their unique properties and biphasic and amphiphilic nature, have attracted much interest and can be considered as a suitable choice for delivery of both hydrophilic and lipophilic statins. In this review article, we focus on liposomes and evaluate the effects of different liposomal delivery systems, based on differences in size, phospholipid composition, circulation half-life, and cholesterol content, on statin function.  相似文献   

11.
Liposomes have been widely used delivery systems, particularly relevant to the development of cancer therapeutics. Numerous liposome-based drugs are in the clinic or in clinical trials today against multiple tumor types; however, systematic studies of liposome interactions with solid or metastatic tumor nodules are scarce. This study is describing the in vitro interaction between liposomes and avascular human prostate (LNCaP-LN3) tumor spheroids. The ability of fluorescently labelled liposomal delivery systems of varying physicochemical characteristics to penetrate within multicellular tumor spheroids has been investigated by confocal laser scanning microscopy. A variety of liposome characteristics and experimental parameters were investigated, including lipid bilayer composition, duration of liposome-spheroid interaction, mean liposome size, steric stabilization of liposomes. Electrostatic binding between cationic liposomes and spheroids was very efficient; however, it impeded any significant penetration of the vesicles within deeper layers of the tumor spheroid. Small unilamellar liposomes of neutral surface character did not bind as efficiently but exhibited enhanced penetrative transport capabilities closer to the tumor core. Polymer-coated (sterically stabilised) liposomes exhibited almost no interaction with the spheroid, indicating that their limited diffusion within avascular tissues may be a limiting step for their use against micrometastases. Multicellular tumor spheroids were used as models of solid tumor interstitium relevant to delivery systems able to extravasate from the microcapillaries or as models of prevascularized micrometastases. This study illustrates that interactions between liposomes and other drug delivery systems with multicellular tumor spheroids can offer critically important information with respect to optimizing solid or micrometastatic tumor delivery and targeting strategies.  相似文献   

12.
Liposomes have been widely used delivery systems, particularly relevant to the development of cancer therapeutics. Numerous liposome-based drugs are in the clinic or in clinical trials today against multiple tumor types; however, systematic studies of liposome interactions with solid or metastatic tumor nodules are scarce. This study is describing the in vitro interaction between liposomes and avascular human prostate (LNCaP-LN3) tumor spheroids. The ability of fluorescently labelled liposomal delivery systems of varying physicochemical characteristics to penetrate within multicellular tumor spheroids has been investigated by confocal laser scanning microscopy. A variety of liposome characteristics and experimental parameters were investigated, including lipid bilayer composition, duration of liposome-spheroid interaction, mean liposome size, steric stabilization of liposomes. Electrostatic binding between cationic liposomes and spheroids was very efficient; however, it impeded any significant penetration of the vesicles within deeper layers of the tumor spheroid. Small unilamellar liposomes of neutral surface character did not bind as efficiently but exhibited enhanced penetrative transport capabilities closer to the tumor core. Polymer-coated (sterically stabilised) liposomes exhibited almost no interaction with the spheroid, indicating that their limited diffusion within avascular tissues may be a limiting step for their use against micrometastases. Multicellular tumor spheroids were used as models of solid tumor interstitium relevant to delivery systems able to extravasate from the microcapillaries or as models of prevascularized micrometastases. This study illustrates that interactions between liposomes and other drug delivery systems with multicellular tumor spheroids can offer critically important information with respect to optimizing solid or micrometastatic tumor delivery and targeting strategies.  相似文献   

13.
Amiodarone (AMI) is a low water-solubility drug, which is very useful in the treatment of severe cardiac disease. Its adverse effects are associated with toxicity in different tissues. Several antioxidants have been shown to reduce, and prevent AMI toxicity. The aim of this work was to develop and characterize Dimyristoylphosphatidylcholine (DMPC) liposomal carriers doped with ascorbyl palmitate (Asc16) as antioxidant, in order to either minimize or avoid the adverse effects produced by AMI. The employment of liposomes would avoid the use of cosolvents in AMI formulations, and Asc16 could minimize the adverse effects of AMI. To evaluate the partition and integration of AMI and Asc16 in lipid membranes, penetration studies into DMPC monolayers were carried out. The disturbance of the liposomes membranes was studied by generalized polarization (GP). The stability of liposomes was evaluated experimentally and by means of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The size particle and zeta potential (ζ) values of the liposomes were used for application in calculations for attractive and repulsive forces in DLVO theory. In experimental conditions all of these vesicles showed stability at time 0, but only DMPC?+?Asc16 10%?+?AMI 10% liposomes kept their size stable and ζ during 28 days. These results are encouraging and suggest that such systems could be suitable for AMI delivery formulations.  相似文献   

14.
Liposomes with entrapped doxorubicin exhibit extended blood residence times   总被引:1,自引:0,他引:1  
The blood residence time of liposomes with entrapped doxorubicin is shown to be significantly longer than for identically prepared empty liposomes. Liposomal doxorubicin systems with a drug-to-lipid ratio of 0.2 (w/w) were administered at a dose of 100 mg lipid/kg. Both doxorubicin and liposomal lipid were quantified in order to assess in vivo stability and blood residence times. For empty vesicles composed of phosphatidylcholine (PC)/cholesterol (55:45, mole ratio) and sized through filters of 100 nm pore size, 15-25% of the administered lipid dose was recovered in the blood 24 h after i.v. injection. The percentage of the dose retained in the circulation at 24 h increased 2-3-fold when the liposomes contain entrapped doxorubicin. For 100 nm distearoyl PC/chol liposomal doxorubicin systems, as much as 80% of the injected dose of lipid and drug remain within the blood compartment 24 h after i.v. administration.  相似文献   

15.
Liposomes are potential drug carriers for pulmonary drug delivery: They can be prepared from phospholipids, which are endogenous to the respiratory tract as a component of pulmonary surfactant, and at an appropriate dose liposomes do not pose a toxicological risk to this organ. Among the various categories of drug that benefit from liposomal entrapment is the anti-inflammatory enzyme superoxide dismutase, thus prolonging its biological half-life. The delivery of liposomes by nebulization is hampered by stability problems, like physical and chemical changes that may lead to chemical degradation and leakage of the encapsulated drug. Here we present data of liposomes aerosolized with a novel electronic nebulizer based on a vibrating membrane technology (PARI eFlow?), which amends drawbacks like liposomes degradation and product release. The data acquisition included aerosol properties such as aerodynamic particle size, nebulization efficiency, and liposome leakage upon nebulization. In conclusion, this study shows the ability of the PARI eFlow? to nebulize high amounts of liposomal recombinant human superoxide dismutase with reduced vesicle disruption tested in an enclosing experimental protocol.  相似文献   

16.
Liposomes composed of egg phosphatidylcholine (EPC) (13.4%, of the acyl chains being polyunsaturated fatty acids (PUFA)) and EPC/cholesterol (10:1 mol/mol) were studied for factors that affect liposomal lipid oxidative damage and hydrolysis upon long-term (16 months) storage. Factors studied include: (1) levels of lipid/water interface hydration, related to the presence of cholesterol in the lipid bilayer; (2) the membrane-associated antioxidant vitamin E; (3) the water-soluble antioxidant Tempol; and (4) exposure to light. Liposomal dispersions were stored at room temperature, either exposed to or protected from daylight, for a period of 16 months. Chemical and physical changes were monitored at several time points to assess oxidative and hydrolytic degradation of liposomal lipids. The conclusions of the study are: (1) PUFA are the most sensitive component of the liposome bilayer to oxidative degradation damage during long-term storage; (2) EPC liposomes are more sensitive to degradation during storage than EPC cholesterol liposomes, the presence of cholesterol in the lipid bilayer having a protective effect, probably due to its effect in decreasing the lipid-bilayer hydration; (3) oxidative degradation is the major process during long-term storage, having an earlier onset than the hydrolytic degradation: and (4) Tempol provided significantly better protection than vitamin E to EPC liposomal PUFA against oxidative damage during long-term storage. The relevance of cholesterol's presence, as a 'drying agent', in membranes containing PUFA to resistance of biological membranes to oxidative damage is discussed.  相似文献   

17.
In this study we investigated the in vitro toxicity, impact on cell permeability and mucoadhesive potential of polymer-coated liposomes intended for use in the oral cavity. A TR146 cell line was used as a model. The overall aim was to end up with a selection of safe polymer coated liposomes with promising mucoadhesive properties for drug delivery to the oral cavity. The following polymers were tested: chitosan, low-methoxylated pectin (LM-pectin), high-methoxylated pectin (HM-pectin), amidated pectin (AM-pectin), Eudragit, poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAAM-co-MAA)), hydrophobically modified hydroxyethyl cellulose (HM-HEC), and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). With chitosan as an exception, all the systems exhibited no significant effect on cell viability and permeability at the considered concentrations. Additionally, all the formulations showed to a varying degree an interaction with mucin (BSM type I-S); the positively charged formulations exhibited the strongest interaction, while the negatively and neutrally charged formulations displayed a moderate or low interaction. The ability to interact with mucin makes all the liposomal formulations promising for oromucosal administration. Although the chitosan-coated liposomes affected the cell viability, this formulation also influenced the cell permeability, which makes it an interesting candidate for systemic drug delivery from the oral cavity.  相似文献   

18.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

19.
Small-sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug-containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) then on the novel L-carnitine derivative PUCE (palmitoyl-(R)-carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of "multiple injection method" was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan-containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI-H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no-liposomal formulation (92% vs. 86 %, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water-insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity.  相似文献   

20.
Small‐sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug‐containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine) then on the novel L‐carnitine derivative PUCE (palmitoyl‐(R)‐carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of “multiple injection method” was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan‐containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI‐H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no‐liposomal formulation (92% vs. 86 %, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water‐insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号