首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180° when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open.  相似文献   

2.
Along with human speech and language processing, birdsong has been one of the best-characterized model systems for understanding the relationship of lateralization of brain function to behavior. Lateralization of song production has been extensively characterized, and lateralization of song perception has begun to be studied. Here we have begun to examine whether behavior and brain function are lateralized in relation to communicative aspects of singing, as well. In order to monitor central brain function, we assayed the levels of several activity dependent immediate early genes after directed courtship singing. Consistent with a lateralization of visual processing during communication, there were higher levels of expression of both egr-1 and c-fos in the left optic tectum after directed singing. Because input from the eyes to the brain is almost completely contralateral in birds, these results suggest that visual input from the right eye should be favored during normal singing to females. Consistent with this, we further found that males sang more when they could use only their right eye compared to when they could use only their left eye. Normal levels of singing, though, required free use of both eyes to view the female. These results suggest that there is a preference for visual processing by the right eye and left brain hemisphere during courtship singing. This may reflect a proposed specialization of the avian left hemisphere in sustaining attention on stimuli toward which a motor response is planned.  相似文献   

3.

Background

European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems.

Results

Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light.

Conclusion

'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system.  相似文献   

4.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

5.
Birds choose mates on the basis of colour, song and body size, but little is known about the mechanisms underlying these mating decisions. Reports that zebra finches prefer to view mates with the right eye during courtship, and that immediate early gene expression associated with courtship behaviour is lateralized in their left hemisphere suggest that visual mate choice itself may be lateralized. To test this hypothesis, we used the Gouldian finch, a polymorphic species in which individuals exhibit strong, adaptive visual preferences for mates of their own head colour. Black males were tested in a mate-choice apparatus under three eye conditions: left-monocular, right-monocular and binocular. We found that black male preference for black females is so strongly lateralized in the right-eye/left-hemisphere system that if the right eye is unavailable, males are unable to respond preferentially, not only to males and females of the same morph, but also to the strikingly dissimilar female morphs. Courtship singing is consistent with these lateralized mate preferences; more black males sing to black females when using their right eye than when using their left. Beauty, therefore, is in the right eye of the beholder for these songbirds, providing, to our knowledge, the first demonstration of visual mate choice lateralization.  相似文献   

6.
Current research suggests that hemispheric lateralization has significant fitness consequences. Foraging, as a basic survival function, is a perfect research model to test the fitness impact of lateralization. However, our understanding of lateralized feeding behavior is based predominantly on laboratory studies, while the evidence from wild animals in natural settings is limited. Here we studied visual lateralization in yellow‐footed green pigeons (Treron phoenicoptera) feeding in the wild. We aimed to test whether different types of food objects requiring different searching strategies elicit different eye/hemisphere biases. When feeding on relatively large, uniformly colored food objects (mahua flowers) which can be present or absent in the viewed patch, the majority of pigeons relied mostly on the left eye–right hemisphere. In contrast, when feeding on smaller and more abundant food objects, with color cues signaling its ripeness (sacred figs), right‐eye (left‐hemisphere) preference prevailed. Our results demonstrate that oppositely directed visual biases previously found in different experimental tasks occur in natural feeding situations in the form of lateralized viewing strategies specific for different types of food. The results suggest that pigeons rely on the hemisphere providing more advantages for the consumption of the particular type of food objects, implying the relevance of brain lateralization as a plastic adaptation to ecological demands. We assessed the success of food discrimination and consumption to examine the link between lateralization and cognitive performance. The use of the preferred eye resulted in better discrimination of food items. Discrimination accuracy and feeding efficiency were significantly higher in lateralized individuals. The results showed that visual lateralization impacted pigeons’ feeding success, implicating important fitness benefits associated with lateralization.  相似文献   

7.
Ectotherms have been shown being lateralized as well as mammals and birds. This is particularly evident in visual lateralization, i.e. the different use of the eyes, leading to use a specific eye to observe specific kind of stimuli and to process them with the correspondent contralateral hemisphere. Several lower vertebrates are facilitated in this from the lateral position of the eyes, enabling them to carry out more tasks simultaneously, controlled by different eyes and relative hemispheres. Predatory responses seem usually mediated by the right eye/left hemisphere in fishes, amphibians and some sauropsids, but there are no strong evidences of this in lizards. Eighteen wild males of the Common wall lizard Podarcis muralis were tested individually in captivity to ascertain whether they are lateralized to look at prey with a specific eye. The lizards were gently induced entering a 30-cm long central arm of a T-maze which led to a 44.5-cm long arm cross-arm at whose extremities there were two identical prey, Tenebrio molitor larvae, familiar to the lizards. We recorded what direction the lizards chose to reach the prey and the frequency and duration of head turning, indicative of looking either prey with the left or the right eye. We found that individuals show being lateralized at individual level. The preferred direction taken to reach the prey is the right for the majority of those (4 of 5) showing an evident preference, indicating also a possible form of laterality at population level. In addition, lizards maintained the same head side of the direction taken turned for more time towards the prey than the opposite head side, revealing an eye preference for observing this kind of cue. Our study demonstrates how males of Podarcis muralis have a visual lateralization to capture prey. Furthermore, it is another support to the hypothesis of vertebrate lateralization derivation from a common ancestor.  相似文献   

8.
Since the birds' magnetic compass works as an inclination compass using the axial course of the magnetic field lines and their inclination, transequatorial migrants have to reverse their reaction with respect to the magnetic field after crossing the magnetic equator. Garden Warblers, long distance migrants breeding in Europe and wintering in tropical and southern Africa, were tested during autumn in the local geomagnetic field on the northern hemisphere. The experimental group was exposed to a field with horizontal field lines, simulating equator crossing, at the beginning of October; afterwards the birds were tested in the local geomagnetic field again. While the controls showed southerly tendencies during the entire season, the experimentals reversed their directional tendencies after staying in the horizontal field and now preferred northerly directions. In a field of the southern hemisphere, this preference corresponds to a southern course which would have meant the continuation of their migration flight.  相似文献   

9.
Behavioural lateralization, which reflects the functional specializations of the two brain hemispheres, is assumed to play an important role in cooperative intraspecific interactions. However, there are few studies focused on the lateralization in cooperative behaviours of individuals, especially in a natural setting. In the present study, we investigated lateralized spatial interactions between the partners in life-long monogamous pairs. The male-female pairs of two geese species (barnacle, Branta leucopsis, and white-fronted, Anser albifrons geese), were observed during different stages of the annual cycle in a variety of conditions. In geese flocks, we recorded which visual hemifield (left/right) the following partner used to monitor the leading partner relevant to the type of behaviour and the disturbance factors. In a significant majority of pairs, the following bird viewed the leading partner with the left eye during routine behaviours such as resting and feeding in undisturbed conditions. This behavioural lateralization, implicating the right hemisphere processing, was consistent across the different aggregation sites and years of the study. In contrast, no significant bias was found in a variety of geese behaviours associated with enhanced disturbance (when alert on water, flying or fleeing away when disturbed, feeding during the hunting period, in urban area feeding and during moulting). We hypothesize that the increased demands for right hemisphere processing to deal with stressful and emergency situations may interfere with the manifestation of lateralization in social interactions.  相似文献   

10.
Two previous experiments on food storing and one-trial associative learning in marsh tits (Clayton 1992a; Clayton and Krebs 1992) demonstrate that information coming into the brain from the left eye disappears from the left eye system between 3 and 24 h after memory formation, whereas that coming into the brain from the right eye remains stable within the right eye system for at least 51 h after memory formation. Performance after a 7 h retention interval appears to represent an intermediate stage in which the information is no longer accessible to the left eye system but is not yet available to the right eye system, suggesting a unilateral transfer of memory. The experiments reported here further investigated lateralization and unilateral transfer of memory in food-storing marsh tits, Parus palustris, using the technique of monocular occlusion. Birds were tested for their ability to retrieve stored seeds after retention intervals of 3, 7 and 24 h under 4 different occlusion treatments. Two predictions were tested: (a) with right eye occlusion during storage, birds should show better memory performance after 3 and 24 h than after 7 h and (b) memory should be more accurate when both eyes are used during storage than with monocular occlusion. The first prediction, which arises from the fact that memory is transferred from the left to the right eye system at about 7 h and is inaccessible during the transfer, was supported by the data. The second prediction, however, was not supported. Previous work has shown that in marsh tits the two eye systems remember preferentially different aspects of the stimulus: the left eye system responds to spatial position and the right eye system to object-specific cues. It is possible that the failure to find superior performance in binocular tests was because the task could be solved by either spatial or object-specific memory.  相似文献   

11.
Cerebral lateralization, an evolutionarily ancient and widespread phenomenon among vertebrates, is thought to bestow cognitive advantages. The advantages of lateralization at the individual-level do not necessarily require that the entire population share the same pattern of lateralization. In fact, directional bias in lateralization may lead to behavioural predictability and enhanced predator success or prey evasion. Recent theory has suggested that population-level lateralization may be favored if individuals are better able to perform coordinated behaviours, providing a distinct advantage in cooperative contexts. Here we test whether the highly social, cooperatively breeding cichlid fish Neolamprologus pulcher shows lateralized responses to a social stimulus. We found population-level biases in males; on average male N. pulcher use their right eye/left hemisphere to view their mirror image. Individual females had a preferred hemisphere, but these preferences appeared not to be directionally aligned among females. We discuss these results in the context of coordinated social behaviour and suggest future research directions.  相似文献   

12.
During autumn migration, orientation tests were performed with Goldcrests in the morning immediately after the birds had been caught. In the local geomagnetic field (vertical component pointing downward), they showed a significant tendency towards 144° SE; in a magnetic field with the vertical component pointing upward, their mean was at 321° NW. This response to an inversion of the vertical component reveals that the Goldcrests used the magnetic field for orientation and that their magnetic compass is an inclination compass as it has been described for several other species of migrants.  相似文献   

13.
Lateralization is the function specialization between left and right brain hemispheres. It is now ascertained in ectotherms too, where bias in eye use for different tasks, i.e., visual lateralization, is widespread. The lateral eye position on the head of ectotherm animals, in fact, allows them to observe left/right stimuli independently and allows lateralized individuals to carry out left and right perceived tasks at the same time. A recent study conducted on common wall lizards, Podarcis muralis, showed that lizards predominantly monitor a predator with the left eye while escaping. However, this work was conducted in a controlled laboratory setting owing to the difficulty of carrying out lateralization experiments under natural conditions. Nevertheless, field studies could provide important information to support what was previously found in the laboratory and demonstrate that these traits occur in nature. In this study, we conducted a field study on the antipredatory behavior of P. muralis lizards. We simulated predatory attacks on lizards in their natural environment. We found no lateralization in the measure of eye used by the lizard to monitor the predator before escaping from it, but the eye used was probably determined by the relative position of the lizard and the predator just before the attack. This first eye used did not affect escape decisions; lizards chose to escape toward the nearest refuge irrespective of whether it was located to the lizard’s left or right side. However, once they had escaped to a refuge, lizards had a left eye–mediated bias to monitor the predator when first emerging from the refuge, and this bias was likely independent of other environmental variables. Hence, these field findings support a left eye–mediated observation of the predator in P. muralis lizards, which confirms previous findings in this and other species.  相似文献   

14.
The avian magnetic compass was analyzed in bird species of three different orders - Passeriforms, Columbiforms and Galliforms - and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity, it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range.  相似文献   

15.
It has been suggested that birds prefer to use a particular eye while learning to detect cryptic prey and that this eye preference enhances foraging performance. European starlings (Sturnus vulgaris) with the left, right, or both eyes available learned to detect inconspicuous cues associated with the presence of hidden prey. Acquisition scores were not significantly different between left and right-eyed birds; however, performance in the binocular condition was significantly higher than in the two monocular conditions. When binocular birds were tested with familiar and unfamiliar cues present simultaneously, the familiar cue was selected significantly more often than the unfamiliar cue, suggesting that the birds were searching for specific cue features. When monocular birds were tested using only the naïve eye, performance dropped significantly. In right-eyed birds using the naïve left eye, performance remained at chance levels over transfer trials. However, left-eyed birds using the naïve right eye had a superior performance compared to the initial acquisition scores of right-eyed birds and also showed a significant improvement in performance over transfer trials. Thus, although there was no direct evidence of lateralization during acquisition, there was unilateral transfer of the prey detection skill from the right to the left hemisphere.  相似文献   

16.
Cerebral lateralization refers to the division of information processing in either hemisphere of the brain and is a ubiquitous trait among vertebrates and invertebrates. Given its widespread occurrence, it is likely that cerebral lateralization confers a fitness advantage. It has been hypothesized that this advantage takes the form of enhanced cognitive function, potentially via a dual processing mechanism whereby each hemisphere can be used to process specific types of information without contralateral interference. Here, we examined the influence of lateralization on problem solving by Australian parrots. The first task, a pebble-seed discrimination test, was designed for small parrot species that feed predominately on small seeds, which do not require any significant manipulation with the foot prior to ingestion. The second task, a string-pull problem, was designed for larger bodied species that regularly use their feet to manipulate food objects. In both cases, strongly lateralized individuals (those showing significant foot and eye biases) outperformed less strongly lateralized individuals, and this relationship was substantially stronger in the more demanding task. These results suggest that cerebral lateralization is a ubiquitous trait among Australian parrots and conveys a significant foraging advantage. Our results provide strong support for the enhanced cognitive function hypothesis.  相似文献   

17.
Together with some aquatic mammals, birds exhibit a unique behavioral and electrophysiological state called "unihemispheric sleep," in which one cerebral hemisphere is awake and the other is sleeping. Slow-wave sleep in one hemisphere is associated with closure of the contralateral eye, while the eye contralateral to the awake hemisphere is open; closure of both eyes, in contrast, is associated with bihemispheric slow-wave sleep or with REM sleep. During the last few days of incubation, the chick's embryo is turned in the egg so that it occludes its left eye, whereas light entering through the shell can stimulate the right eye. Here we show that in the first two days after hatching, chicks coming from eggs incubated in the light prevalently slept with their right eye open, whereas those coming from eggs incubated in the dark prevalently slept with their left eye open. Thus, asymmetric light stimulation in the embryo can modulate the left-right direction of eye opening during post-hatching monocular sleep.  相似文献   

18.

Background

Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts.

Methodology/Principal Findings

Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother''s right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves'' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere.

Conclusions/Significance

Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates.  相似文献   

19.
There are current attempts to replace the WADA test for pre-surgical evaluation of hemispheric language capabilities by one of the methods of functional brain imaging. Recent PET and fMRI studies using verbal cognitive tasks like verb generation, semantic monitoring or semantic (`deep') encoding of words showed asymmetries of activation in the fronto-lateral cortex. In a previous ERP study subjects were required to indicate whether pronounceable non-words and abstract geometric figures were presented for the first time (`new item') or whether they had been shown before (`old item'). Group analyses of this study showed significant material-specific hemispheric asymmetries with ERPs being more negative-going in recordings of the posterior part of the left hemisphere with verbal material (CP5/6) but more negative-going in recordings of the right hemisphere with the spatial material (P7/8). The aim of the present study was to test statistically ERP lateralization effects in individual healthy subjects as well as WADA-tested patients suffering from seizures of the mesio-temporal lobe (MTL). In all subjects ERP lateralization with verbal material was tested in the electrode pair CP5/6, and ERP lateralization with figures in the electrode pair P7/8. Statistical analyses of single trials showed that in 20 out of 24 subjects ERPs with verbal material started to be more negative-going in CP5 as compared to CP6 in the period between 100 and 200 ms after stimulus onset or the subsequent time epoch (200–300 ms). In one subject not CP5/6 but the closely adjacent electrode pair P7/P8 showed this verbal material-related hemispheric effect. In patients language dominance as indicated by ERPs was not always consistent with the data of the WADA test. In one patient with left MTL seizures ERPs with verbal material and figures were found to be significantly lateralized to the right hemisphere although the WADA test assigned this patient to have a language-dominant left hemisphere.  相似文献   

20.

Background

While hemispheric specialization of language processing is well established, lateralization of emotion processing is still under debate. Several conflicting hypotheses have been proposed, including right hemisphere hypothesis, valence asymmetry hypothesis and region-specific lateralization hypothesis. However, experimental evidence for these hypotheses remains inconclusive, partly because direct comparisons between hemispheres are scarce.

Methods

The present fMRI study systematically investigated functional lateralization during affective stimulus processing in 36 healthy participants. We normalized our functional data on a symmetrical template to avoid confounding effects of anatomical asymmetries. Direct comparison of BOLD responses between hemispheres was accomplished taking two approaches: a hypothesis-driven region of interest analysis focusing on brain areas most frequently reported in earlier neuroimaging studies of emotion; and an exploratory whole volume analysis contrasting non-flipped with flipped functional data using paired t-test.

Results

The region of interest analysis revealed lateralization towards the left in the medial prefrontal cortex (BA 10) during positive stimulus processing; while negative stimulus processing was lateralized towards the right in the dorsolateral prefrontal cortex (BA 9 & 46) and towards the left in the amygdala and uncus. The whole brain analysis yielded similar results and, in addition, revealed lateralization towards the right in the premotor cortex (BA 6) and the temporo-occipital junction (BA 19 & 37) during positive stimulus processing; while negative stimulus processing showed lateralization towards the right in the temporo-parietal junction (BA 37,39,42) and towards the left in the middle temporal gyrus (BA 21).

Conclusion

Our data suggests region-specific functional lateralization of emotion processing. Findings show valence asymmetry for prefrontal cortical areas and left-lateralized negative stimulus processing in subcortical areas, in particular, amygdala and uncus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号