首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.  相似文献   

2.
Xu T  Xin M  Li M  Huang H  Zhou S  Liu J 《Carbohydrate research》2011,346(15):2445-2450
N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by 1H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba2+ and Ca2+) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na+ slightly reduced the antibacterial activity of both chitosan and its derivatives.  相似文献   

3.
壳聚糖与甲醛、甲酸反应得到N,N-二甲基壳聚糖,然后以硫酸二甲酯为季铵化试剂反应得到N,N,N-三甲基壳聚糖甲基硫酸盐(TMCMS),用IR1、H NMR和元素分析对其结构进行了表征。元素分析结果表明其季铵化度为74.6%,差示扫描量热法和热重分析法结果表明其热稳定性比壳聚糖差,但其水溶性明显优于壳聚糖,25℃时在水中的溶解度可达20 mg/mL,浓度为2 mg/mL时在pH 3~12范围内无沉淀产生。  相似文献   

4.
A new series of (E)-pyrene oxime ester conjugates of carboxylic acids including amino acids were synthesized by coupling with an environment sensitive fluorophore 1-acetylpyrene. (E)-Pyrene oxime esters exhibited strong fluorescence properties and interestingly their fluorescence properties were found to be highly sensitive to the surrounding environment. Direct irradiation of the (E)-pyrene oxime esters by UV light (≥350 nm) resulted in both the photo-Beckmann rearrangement product and products resulting from N-O bond homolysis. Photoproduct formation and their distribution were found to be solvent dependent. Further, we also showed (E)-pyrene oxime esters intercalated into DNA efficiently and photo-cleaved DNA. Finally we also showed these oxime esters can permeate cells efficiently and may cause cytotoxicity upon irradiation of light.  相似文献   

5.
An efficient synthetic route was developed for the mild chloroacylation of chitosan with different chloroacyl chlorides. Full N-chloroacylation was obtained with this procedure without any O-acylation, and products having lower degrees of substitution can also be produced. Organo-soluble 6-O-triphenylmethylchitosan was used as a starting material for the acylation reactions. The resulting N-chloroacyl-6-O-triphenylmethylchitosan intermediates were also organo-soluble and characterized by FT-IR. N-Methylpiperazine moieties were attached to make end products that were sufficiently soluble for characterization by NMR and also to prove that the present intermediates could be used for further modifications. The end products were fully characterized by 1H NMR, 13C NMR, and 2D 1H-13C heteronuclear single-quantum correlation NMR spectroscopy. The degrees of substitution were determined by 1H NMR. Molecular weight determination by GPC-LS displayed a significant degradation of the polymer. The weight-average molar masses (M(w)) of the end products ranged from 29.6 to 49.4 kDa, when the M(w) of the starting material was 144.2 kDa.  相似文献   

6.
The level of conjugation of diethylenetriaminepentaacetic acid (DTPA) to the polysaccharide sodium hyaluronan (HA) has been measured by a colorimetric assay, isothermal titration calorimetry (ITC), and (1)H NMR spectroscopy. The colorimetric assay is based on the red shift, upon complexation with gadolinium ion (Gd3+), of the wavelength of maximum absorption of the dye arsenazo III. It can be performed in a few minutes using as little as 10 microg of polymer with a detection limit of approximately 0.03 mmol of DTPA (gram of polymer)-1. The ITC measurements yield values of the amount of DTPA linked to HA identical to those obtained by colorimetry. The levels of DTPA conjugation calculated by integration of signals at 3.1-3.2 ppm (DTPA protons) and at 2.0 ppm (HA acetamide protons) in the 1H NMR spectrum of HA-DTPA are consistently overestimated by a factor of approximately 2, compared to the data obtained by ITC and colorimetry. The longer relaxation times of protons of the polymer backbone, compared to those of protons attached to the freely moving DTPA side-chains may account for the discrepancy.  相似文献   

7.
Group B capsular polysaccharide of N. meningitidis was analyzed by 2D NMR spectroscopy. The 1H-NMR spectrum of the polymer was completely assigned by 2D homonuclear (COSY and HOHAHA) and heteronuclear (1H, 13C) NMR experiments.  相似文献   

8.
The protonation equilibria of a pentadentate ligand, N,N'-(2,2'-azanediylbis(ethane-2,1-diyl))dipicolinamide ([H(2)(5555)-N]) and the complexation of this ligand with Cu(II) Ca(II), Zn(II) and Ni(II) have been studied by pH-potentiometry, (1)H NMR spectroscopy and UV-vis spectrophotometry. (1)H NMR detected the protonation of the pyridyl groups and formation of Cu[H(2)(5555)-N]H species at low pH, while amide group deprotonation at higher pH resulted in the formation of Cu[H(2)(5555)-N]H(-1) and Cu[H(2)(5555)-N]H(-2) species in solution. Potentiometric detection of protonated species was limited by the acidic nature of the pyridyl nitrogen donors. From UV-vis spectroscopy it is suggested that the amide nitrogens are coordinated. This conclusion is supported by Molecular Mechanics calculations. Water-octanol partition coefficients for the Cu(II)-[H(2)(5555)-N] system indicated that although the Cu[H(2)(5555)-N]H(-1) species is largely hydrophilic, approximately 54% of the complex goes into the organic phase. This percentage is able to promote dermal absorption of copper with a calculated penetration rate of 1.92x10(-1)cmh(-1). This was confirmed by dermal absorption studies which illustrate the role of hydrophobicity in promoting percutaneous drug administration.  相似文献   

9.
Location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) covalently attached to a short (C6) or a long (C12) sn2 acyl chain of a phosphatidylcholine molecule was investigated by fluorescence and solid-state NMR spectroscopy. 2H NMR lipid chain order parameters indicate a perturbation of the phospholipid packing density in the presence of NBD. Specifically, a decrease of molecular order was found for acyl chain segments of the lower, more hydrophobic region. Molecular collision probabilities determined by 1H magic angle spinning nuclear Overhauser enhancement spectroscopy indicate a highly dynamic reorientation of the probe in the membrane due to thermal fluctuations. A broad distribution of the fluorophore in the lipid bilayer is observed with a preferential location in the upper acyl chain/glycerol region. The distribution of the NBD group in the membrane is quite similar for both the long- and the short-chain analog. However, a slight preference of the NBD group for the lipid-water interface is found for C12-NBD-PC in comparison with C6-NBD-PC. Indeed, as shown by dithionite fluorescence assay, the long-chain analog reacts more favorably with dithionite, indicating a better accessibility of the probe by dithionite present in the aqueous phase. Forces determining the location of the fluorophore in the lipid water interface are discussed.  相似文献   

10.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   

11.
Advances on selective C-6 oxidation of chitosan by TEMPO   总被引:1,自引:0,他引:1  
The specific C-6 oxidation by TEMPO of chitosan and chitosan derivatives were studied to obtain tailored bioactive biopolymers. The modifications on chitosan presented many difficulties and showed the adverse effect of the amine moieties of chitosan on this reaction. Thus, protections of the amino groups by N-acetylation or N-phthaloylation were studied and followed by the C-6 specific oxidations of the resulting polymers. The desired 6-carboxychitosan could not be obtained after deprotection; the reactions with TEMPO led to degradation of the polymers. The specific oxidation of a potentially bioactive derivative of chitosan was then achieved by the oxidation of a quaternized chitosan: N, N, N-trimethylchitosan. N, N, N-Trimethyl-6-carboxychitosan was characterized by FTIR spectroscopy, 1H, and 13C NMR spectroscopy.  相似文献   

12.
Sequential copolymerizations of trimethylene carbonate (TMC) and l-lactide (LLA) were performed with 2,2-dibutyl-2-stanna-1,3-oxepane as a bifunctional cyclic initiator. The block lengths were varied via the monomer/initiator and via the TMC/l-lactide ratio. The cyclic triblock copolymers were transformed in situ into multiblock copolymers by ring-opening polycondensation with sebacoyl chloride. The chemical compositions of the block copolymers were determined from (1)H NMR spectra. The formation of multiblock structures and the absence of transesterification were proven by (13)C NMR spectroscopy. Differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and dynamic mechanical analysis (DMA) measurements confirmed the existence of a microphase-separated structure in the multiblock copolymers consisting of a crystalline phase of poly(LLA) blocks and an amorphous phase formed by the poly(TMC) blocks. Stress-strain measurements showed the elastomeric character of these biodegradable multiblock copolymers, particularly in copolymers having epsilon-caprolactone as comonomer in the poly(TMC) blocks.  相似文献   

13.
The following structure of the repeating unit of the Proteus mirabilis O27 O-specific polysaccharide was established: (formula; see text) where (formula; see text) is N-glucopyranuronoyl-L-lysine, (formula; see text) is N-galactopyranuronoyl-L-alanine. The polysaccharide was parially solvolysed with anhydrous HF and the resulting dephosphorylated tri- and tetrasaccharide with N-acetylglucosamine at the reducing end were studied by means of 1H and 13C NMR spectroscopy and (for methylated derivative of trisaccharide) mass-spectrometry. Smith degradation of the polysaccharide afforded linear polymer, and its structure was investigated by 13C NMR spectroscopy. The position of the ethanolamine phosphate group was determined by means of the analysis of the phosphorylation effects in the 13C NMR spectra of the linear and branched polysaccharides.  相似文献   

14.
The object of this study was to test the solubility of a methoxy poly(ethylene glycol) (MPEG)-grafted chitosan copolymer in organic solvents and aqueous solution. Water-soluble chitosan with low molecular weight (LMWSC) was used in a PEG-graft copolymerization. The MPEG was conjugated to chitosan using 4-dicyclohexylcarbodimide (DCC), and N-hydroxysuccimide (NHS). Introduction of PEG was confirmed by (1)H and (13)C NMR spectroscopy and FT-IR spectroscopy. The degree of substitution (DS) of MPEG into chitosan was calculated from (1)H NMR data and also by estimating the molecular weight (MW) using gel permeation chromatography (GPC). The DS values obtained from (1)H NMR spectroscopy and GPC were similar, indicating that MPEG-grafted LMWSC was synthesized and properly characterized. Furthermore, the introduction of PEG into chitosan increases the solubility in aqueous solutions over a range of pH values (4.0-11.0) and organic solvents such as DMF, DMSO, ethanol, and acetone.  相似文献   

15.
Huang R  Du Y  Yang J  Fan L 《Carbohydrate research》2003,338(6):483-489
A new method for the chemical modification of chitosan sulfate was used to prepare N-propanoyl-, N-hexanoyl- and N,O-quaternary substituted chitosan sulfate. Structural analysis by elemental analysis, FTIR, 13C NMR, and 1H NMR spectroscopy, and gel-permeation chromatography showed that these methods could conveniently be used for the introduction of functional groups. The influences of the acyl or quaternary groups on the anticoagulant activity of the polysaccharides were studied with respect to activated partial thromboplastin time (APTT) thrombin time (TT), and prothrombin time (PT). The propanoyl and hexanoyl groups increased the APTT activity, and the propanoyl groups also increased the TT anticoagulant activity slightly, while the N,O-quaternary chitosan sulfate showed only a slight TT coagulant activity.  相似文献   

16.
(1)H NMR spectroscopy was used to compare the uptake of nitrogen into cyanobacterial cyanophycin from two sources: from the breakdown of intracellular proteins and amino acids, and directly from the external growth medium. Cells grown initially in medium containing (14)N-nitrate were transferred to (15)N-nitrate medium in the presence of chloramphenicol in both low (4 microE m(-2) s(-1)) and normal (100 microE m(-2) s(-1)) light, and in low light alone. Cyanophycin was separated from cells and analyzed by (1)H NMR spectroscopy. Cyanophycin is synthesized both from (14)N (degradation of cellular proteins) and from (15)N in the medium, the latter at a faster rate and to a greater extent under all conditions. SDS-PAGE showed that cyanophycin synthesis takes place by addition of monomers to already synthesized polymer.  相似文献   

17.
The novel low-molecular-weight chitosan polysulfate (MW 5120-26,200 Da) was prepared using the depolymerization of chitosan with papain (EC. 3.4.22.2). The sulfonation of depolymerized products was performed using chlorosulfonic acid in N,N-dimethylformamide under semi-heterogeneous conditions. The structures of the products were characterized by FTIR, 13C NMR, and 1H NMR (1D, 2D NMR) spectroscopy. The present study sheds light on the mechanism of anticoagulant activity of chitosan polysulfate. Anticoagulant activity was investigated by an activated partial thromboplastin assay, a thrombin time assay, a prothrombin time assay, and thrombelastography. Surface plasmon resonance also provided valuable data for understanding the relationship between the molecular binding of sulfated chitosan to two important blood clotting regulators, antithrombin III and heparin cofactor II. These results show that the principal mechanism by which this chitosan polysulfate exhibits anticoagulant activity is mediated through heparin cofactor II and is dependent on polysaccharide molecular weight.  相似文献   

18.
A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M(w) approximately 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from approximately 11 to approximately 53 mol % PC-substituted glucosamine residues. The PC-CH derivatives were characterized by (1)H NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pK(a) of the PC-substituted amine groups (pK(a) approximately 7.20) was determined by (1)H NMR titration. The PC-CH samples (1.0 g L(-1)) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L(-1)) of DS >or= 22 mol % PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.  相似文献   

19.
The aim was to evaluate the influence of N-trimethyl chitosan chloride (TMC) as a carrier for solid dispersion on the dissolution of poorly water-soluble drugs. In this study, we used cyclosporin A(CyA) as a model drug and TMC as a carrier. The effect of various formulation and process variables including TMC-to-CyA mixing weight ratio, weigh molecular(Mw) of TMC and methods used to disperse CyA along with the TMC on the drug dissolution was investigated. The nature of CyA dispersed in the matrix was studied by powder X-ray diffractometry (PXRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and dissolution rate analyses. It was proved that all solid mixtures of CyA with TMCs showed a significantly rapid dissolution rate compared to pure drug and physical mixture. The greater the TMC content the higher the drug dissolution was, up to a maximum corresponding to a polymer: drug ratio of 3:1. The lower the Mw of TMC, the more important the polymer effect was. The dissolution of CyA was remarkably improved by the solid dispersion. The drug dissolution enhancement was attributed to the decreased drug crystallinity and size and polymer wetting effect. There was no significant difference in the efficiency of improving the drug dissolution between the solid dispersions prepared by solvent dispersing and by co-grinding. It was suggested that the TMC with a lower molecular weight is a useful carrier for solid dispersion.  相似文献   

20.
A A Yee  J D O'Neil 《Biochemistry》1992,31(12):3135-3143
An alamethicin, secreted by the fungus Trichoderma viride and containing a glutamine at position 18 instead of the usual glutamic acid, has been uniformly labeled with 15N and purified by HPLC. The extent of 15N incorporation at individual backbone and side-chain sites was found to vary from 85% to 92%, as measured by spin-echo difference spectroscopy. The proton NMR spectrum of the peptide dissolved in methanol was assigned using correlation spectroscopies and nuclear Overhauser enhancements (NOE) measured in the rotating frame. The 15N resonances were assigned by the 2D 1H-15N correlation via heteronuclear multiple-quantum coherence experiment. NOEs and 3JNHC alpha H coupling constants strongly suggest that, in methanol, from Aib-3 to Gly-11, the peptide adopts a predominantly helical conformation, in agreement with previous 1H NMR studies [Esposito, G., Carver, J.A, Boyd, J., & Campbell, I.D. (1987) Biochemistry 26, 1043-1050; Banerjee, U., Tsui, F.-P., Balasubramanian, T.N., Marshall, G.R., & Chan, S I. (1983) J. Mol. Biol. 165, 757-775]. The conformation of the carboxyl terminus (12-20) is less well determined, partly because the amino acid composition reduces the number of NOEs and coupling constants which can be determined by 1H NMR spectroscopy. The 3JNHC alpha H in the C-terminus suggest the possibility of conformational averaging at Leu-12, Val-15, and Gln-19, an interpretation which is supported by a recent molecular dynamics simulation of the peptide [Fraternalli, F. (1990) Biopolymers 30, 1083-1099].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号