首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A protein was isolated from the soluble fraction of rat brain by affinity chromatography with Sepharose to which guanine nucleotide-binding inhibitory regulatory protein in adenylate cyclase system, Ni, was immobilized. The molecular weight of this protein, specifically bound to the Ni-affinity column, was estimated as 54,000 on sodium dodecylsulfate-polyacrylamide gel electrophoresis. Alternately prepared tubulin also bound to the Ni-affinity column. The amino acid compositions of these proteins were also identical. It is strongly suggested that this Ni-binding cytosolic protein is tubulin.  相似文献   

2.
Inhibitory coupling of receptors to adenylate cyclase previously has been shown to be relatively sensitive to inactivation by alkylation with N-ethylmaleimide (NEM). Modification of the inhibitory guanine nucleotide regulatory protein, Ni, has been proposed to be responsible for this effect. The effects of NEM on GTP-sensitive binding of carbachol to muscarinic cholinergic receptors has been compared in a cell line (1321N1 human astrocytoma cells) in which these receptors stimulate phosphoinositide breakdown and in a cell line (NG108-15 neuroblastoma X glioma cells) in which activation of these receptors results in inhibition of adenylate cyclase. Pretreatment of membrane preparations from 1321N1 cells with NEM resulted in a concentration-dependent decrease in the extent of pertussis toxin-catalysed [32P]ADP-ribosylation of a 41 000 Da protein previously proposed to be the alpha subunit of Ni. Under conditions where 32P-labelling of Ni in 1321N1 membranes was reduced by NEM by 90%, no effect was observed on the extent of guanine nucleotide-sensitive high-affinity binding of carbachol to muscarinic cholinergic receptors. In contrast, treatment of NG108-15 membranes with NEM under the same conditions resulted in complete loss of high-affinity guanine nucleotide sensitive binding of carbachol. These results illustrate another difference between the muscarinic receptor population of these two cell lines, and support the previous proposal that muscarinic receptors of 1321N1 cells couple to a guanine nucleotide regulatory protein that is not Ni.  相似文献   

3.
Exposure of the alpha-adrenergic receptor of the human platelet to agonist prior to solubilization stabilizes a receptor complex of the alpha-adrenergic receptor with the GTP-binding protein(s) which modulates receptor affinity for agonists (Smith, S. K., and Limbird, L. E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4026-4030). The soluble alpha-adrenergic receptor is characterized by retention of sensitivity to GTP and a faster rate of sedimentation in sucrose gradients than antagonist-occupied or unoccupied receptors. The present studies were undertaken to determine whether the alpha-adrenergic receptor, which is coupled to inhibition of adenylate cyclase, contains the same GTP-binding protein that is involved in activation of adenylate cyclase. The GTP-binding protein that is coupled to activation of adenylate cyclase was labeled with [32P]ADP-ribose using cholera toxin. Incorporation of [32]ADP-ribose into a Mr = 42,000 peptide in human platelet membranes was paralleled by an enhancement of GTP-sensitive catalytic activity in the membranes. However, cholera toxin treatment did not modify alpha-receptor-mediated inhibition of adenylate cyclase or interaction of the alpha-receptor with agonist agents. Moreover, sucrose gradient centrifugation revealed that the [32P]ADP-ribosylated Mr = 42,000 subunit of the stimulatory GTP-binding protein did not appear to associate with the agonist-alpha-receptor complex. These data suggest that the GTP-binding protein that mediates GTP activation of adenylate cyclase in the human platelet membrane is distinct from the GTP-binding protein that modulates alpha-adrenergic receptor affinity for agonist agents and which associates with the receptor in the presence of agonists.  相似文献   

4.
Parasympathetic and sympathetic innervation of the embryonic chick heart proceed non-coordinately. beta-Adrenergic agonists mediate an increase in beating rate in embryonic chick heart prior to ingrowth of the vagus nerve (Culver, N. G., and Fishman, D. A. (1977) Am. J. Physiol. 232, R116-R123) while muscarinic agonists exert relatively little effect on beating rate in hearts 2-4 days in ovo (Papanno, A. J. (1979) Pharmacol. Rev. 29, 3-33). Studies of developmental changes in the ability of muscarinic agonists to inhibit adenylate cyclase activity and their relationship to the development of a physiologic response of the embryonic chick heart to muscarinic stimulation have been inconclusive. In the current studies the ability of isoproterenol to stimulate adenylate cyclase activity did not change during development. Maximum stimulation above basal was 760 pmol of cAMP/10 min/mg of proterin with an IC50 of 1.5 X 10(-6) M for isoproterenol in homogenates of hearts 2 1/2, 3 1/2, and 10 days in ovo and 3 days posthatching. However, inhibition of isoproterenol-stimulated adenylate cyclase activity by carbamylcholine increased from 7.6% with a IC50 for carbamylcholine of 16 +/- 5.0 microM at day 2 1/2 in ovo to 29% with an IC50 of 0.4 +/- 0.1 microM at day 10 in ovo and to 43% with a IC50 of 0.6 +/- 0.1 microM at 3 days posthatching. Since previous data had demonstrated the presence of muscarinic receptors as early as 2 1/2 days in ovo (Galper, J. B., Klein, W., and Catterall, W. A. (1977) J. Biol. Chem. 252, 8692-8699), studies of developmental changes in guanine nucleotide-coupling proteins were carried out to determine whether early in development muscarinic receptors were uncoupled from a physiologic response. Studies of pertussis toxin-catalyzed ADP-ribosylation of homogenates of embryonic chick heart with [32P]NAD demonstrated the presence of two ADP-ribosylated proteins at 39,000 and 41,000 kDa, respectively. Both ADP-ribosylation and immunoblotting of homogenates with an antibody to the 39-kDa guanine nucleotide-binding protein in bovine brain demonstrated that the 39-kDa alpha protein increased 1.8-fold between days 2 1/2 and 3 1/2 in ovo and another 1.8-fold from day 3 1/2 to 10 in ovo in parallel with the increase in the extent of muscarinic inhibition of adenylate cyclase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The guanine nucleotide regulatory protein component (N) of the frog erythrocyte membrane adenylate cyclase system appears to form a stable complex with the beta-adrenergic receptor (R) in the presence of agonist (H). This agonist-promoted ternary complex HRN can be solubilized with Lubrol. The guanine nucleotide regulatory protein associated with the solubilized complex can be adsorbed either to GTP-Sepharose directly or to wheat germ lectin-Sepharose via its interaction with the receptor which is a glycoprotein. Guanosine 5'-O-(3-thiotriphosphate)(GTP gamma S) can be used to elute the guanine nucleotide regulatory protein from either Sepharose derivative. The resulting N.GTP gamma S complex conveys nucleotide-dependent adenylate cyclase activity when combined with a Lubrol-solubilized extract of turkey erythrocyte membranes. The ability to observe GTP gamma S-dependent reconstitution of adenylate cyclase activity in the eluate from either resin required the formation of the HRN complex prior to solubilization. The N protein can be identified by its specific [32P]ADP ribosylation catalyzed by cholera toxin in the presence of [32P]NAD+. The existence of a stable HRN intermediate complex is supported by the observation that agonist pretreatment of frog erythrocyte membranes results in a 100% increase in the amount of 32P-labeled N protein eluted from the lectin-Sepharose in the presence of GTP gamma S compared to membranes pretreated with either antagonist or agonist plus GTP. Our results therefore provide evidence that the same guanine nucleotide-binding protein that associates with the beta-adrenergic receptor in the presence of agonist mediates adenylate cyclase activation.  相似文献   

6.
The present investigation was performed in order to study the properties of abnormal membrane function related to ACTH receptor-adenylate cyclase system interaction in human ACTH-unresponsive adrenocortical cancer. Two tissues of adrenocortical cancer obtained from a patient with Cushing's syndrome (CS) and a case presenting no abnormal endocrinological findings (NF) were used for in vitro studies, comparing with three normal adrenal tissues. The addition of ACTH alone and ACTH plus 10(-6) M GppNHp did not enhance the adenylate cyclase (AC) activity in the CS and NF tissues. Relative insensitivity of AC to GTP, GppNHp, and cholera toxin was observed for the NF tissue, while the rate of response to GppNHp for the CS tissue which also showed relative insensitivity to GTP and cholera toxin was similar to that for the normal tissues. Forskolin which is reported to directly activate the catalytic unit of the AC complex increased the AC activity of both CS and NF tissues as well as that of the normal tissues. Therefore, the function of the catalytic unit itself may be rather well preserved in these tumor tissues. These results suggest that the lack of ACTH receptor at the cell membrane surface might be responsible for ACTH-unresponsiveness in the CS tissue, although an accelerated degradation of GTP could contribute to decreased activity of GTP-binding protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Forskolin, a novel diterpene activator of adenylate cyclase in membranes and intact cells, activates the enzyme in membranes from mutant cyc-S49 murine lymphoma cells and the soluble enzyme from rat testes. Each of these enzymes consists only of the catalytic subunit and does not have a functional guanine nucleotide-binding protein. In both cases forskolin converts the manganese-dependent enzymes to a form which does not require manganese for activity. Forskolin can also stimulate a detergent-solubilized preparation of adenylate cyclase from rat cerebral cortex. Activation of adenylate cyclase by forskolin is therefore not dependent on a perturbation of membrane structure nor does it require a functional guanine nucleotide-binding subunit.  相似文献   

8.
We had previously demonstrated that the cyc- mutant of S49 wild-type lymphoma cells both desensitizes and undergoes a sequestration-internalization of the beta-receptor in response to short-term treatment with adrenaline. The cyc- mutant of S49 wild-type lymphoma cells lacks the alpha s subunit of the stimulatory coupling protein Ns, but has fully functional Ni, the inhibitory component of the regulatory complex. This suggested that functional Ns was not required for desensitization. To examine the role of Ni in desensitization, both S49 wild-type and cyc- cells were treated with islet-activating protein under conditions that led to over 85% attenuation of Ni function in S49 wild-type cells and approx. 50% attenuation of Ni function in cyc- cells. This treatment had no effect on the adrenaline-induced desensitization of adenylate cyclase or the sequestration event measured by the apparent movement of beta-adrenergic receptors to a light-vesicle fraction. Further, the desensitization event, which occurs before the sequestration event, observable only in intact cells, was also not altered by islet-activating-protein pretreatment of S49 wild-type cells. The data suggest that a functional Ni is not required for desensitization in the S49 lymphoma cells.  相似文献   

9.
Insulin caused the inhibition of glucagon-stimulated adenylate cyclase activity in liver plasma membranes, but failed to inhibit this activity in liver membranes from rats made diabetic by treatment with either alloxan or streptozotocin. Treatment of streptozotocin-diabetic rats with insulin, to normalize their blood glucose concentrations, restored this action of insulin. Rats treated with the biguanide drug metformin exhibited a decreased content of the inhibitory guanine nucleotide regulatory protein Gi in liver plasma membranes assessed both structurally, by using a specific polyclonal antibody (AS7), and functionally. Treatment of normal rats with metformin did not alter insulin's ability to inhibit adenylate cyclase in liver plasma membranes; however, metformin treatment of streptozotocin-diabetic rats completely restored this inhibitory action of insulin. Liver plasma membranes from streptozotocin-diabetic animals which either had or had not been treated with metformin had contents of Gi which were less than 10% of those seen in control animals. We conclude that: (i) insulin does not inhibit adenylate cyclase activity through the inhibitory guanine nucleotide regulatory protein Gi; (ii) streptozotocin- and alloxan-induced diabetes elicit a selective insulin-resistant state; and (iii) metformin can exert a post-receptor effect, at the level of the liver plasma membrane, which restores the ability of insulin to inhibit adenylate cyclase.  相似文献   

10.
11.
Adenylate cyclase activity can be stimulated in the rabbit iris-ciliary body directly by forskolin or through receptor-mediated mechanisms by vasoactive intestinal peptide (VIP) and the β-adrenoreceptor agonists isoproterenol and salbutamol. Increases in the level of c-AMP observed following application of forskolin, isoproterenol and VIP are decreased by carbachol in a dose-dependent manner. The carbachol response is blocked by pertussis toxin and is insensitive to the phosphodiesterase inhibitor theophyline suggesting the involvement of a Gi-protein. Carbachol attenuation of elevated c-AMP levels can be inhibited by the muscarinic antagonist atropine but not by the specific muscarinic receptor antagonist pirenzepine. This is in contrast to carbachol stimulation of inositol phosphate accumulation, where both atropine and pirenzepine inhibit the muscarinic response. Thus there exist two distinct muscarinic receptors in the iris-ciliary body, one linked to adenylate cyclase and the other to the hydrolysis of phosphoinositides.  相似文献   

12.
Purified porcine atrial muscarinic receptor (mAcChR) was reconstituted with purified porcine atrial inhibitory guanine nucleotide binding protein (Gi) in a lipid mixture consisting of phosphatidylcholine, phosphatidylserine, and cholesterol (1:1:0.1 w/w). 5'-Guanylyl imidodiphosphate (0.1 mM) had no effect on the binding of the muscarinic antagonist L-quinuclidinyl benzilate but converted high-affinity carbachol binding sites (Kd equal to 1 microM) in the reconstituted preparation to the low-affinity state (Kd equal to about 100 microM). Steady-state kinetic measurements of GTPase activity showed that the turnover number was increased from 0.19 min-1 in the presence of the muscarinic antagonist L-hyoscyamine to 2.11 min-1 for the agonist carbachol. The affinity of Gi for GDP was reduced by about 50-fold upon interaction with the carbachol-mAcChR complex, and the observed rate constant for GDP dissociation was increased by 38-fold from 0.12 to 4.5 min-1. Thus, the increase in steady-state GTPase activity observed for muscarinic agonists is largely, if not exclusively, due to the increase in GDP dissociation from Gi--probably the rate-limiting step in the steady-state mechanism. Carbachol-stimulated GTPase was sensitive to ADP-ribosylation of the reconstituted Gi by pertussis toxin, but the high-affinity agonist binding was uncoupled only when the reconstituted preparation was treated with pertussis toxin in the presence of GTP and the agonist acetylcholine. These results suggest that association with the mAcChR protects Gi from ADP-ribosylation by pertussis toxin.  相似文献   

13.
Adenylate cyclase (ATP pyrophosphate-lyase, EC 4.6.1.1) in plasma membranes from human thyroid was highly responsive to thyrotropin. Pretreatment of thyroid plasma membranes with 5′-guanylylimidodiphosphate (Gpp(NH)p) in the presence of Mg2+ led to a temperature-dependent activation, which was seen neither in the absence of Mg2+ nor at 4 °C. By contrast, thyrotropin bound to its receptors regardless of the temperature and produced its maximal effect after 2 min of preincubation in the absence or presence of Mg2+. Furthermore, activation was seen after treatment with thyrotropin and Gpp(NH)p even carried out in the absence of Mg2+ or at 4 °C. However, the full activation by Gpp(NH)p required Mg2+, hormone, and elevated temperature. These observations suggest that there appears to be two types of nucleotide interaction responsible for the Gpp(NH)p activation in human thyroid membrane; one type seen in the absence of hormone may represent the system uncoupled from hormone receptor, while the fully coupled hormone-sensitive adenylate cyclase accounts for the second type of interaction which requires the presence of hormone.  相似文献   

14.
Two substances, cAMP and 2,3-dimercapto-1-propanol (BAL) are known to induce transient activation of adenylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) has a deletion in a gene for G alpha 2, a guanine nucleotide binding protein and cannot activate the cyclase in response to cAMP. We found that BAL induced activation in the frigid mutant. This result suggests that the BAL-induced activation is independent of G alpha 2 and that BAL mimics a role of activated G alpha 2. We also found that cAMP promoted the BAL-induced activation. This result suggests that cAMP plays a role in activation through a mechanism in which G alpha 2 is not involved. We lastly showed that continuous cAMP stimulation could not inhibit the BAL-induced activation in the frigid mutant. Since the cAMP-induced inhibition observed in the wild type strain (NC4) proceeds with the time course identical to the cAMP-induced adaptation (Oyama, submitted), this result suggests that G alpha 2 is involved in adaptation of adenylate cyclase.  相似文献   

15.
The initial response of many cells to 'Ca2+-mobilizing' agonists is phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate to inositol trisphosphate (IP3) and diacylglycerol. It has been suggested, by analogy with receptor regulation of adenylate cyclase, that 'Ca2+-mobilizing' receptors may interact with a guanine nucleotide-binding protein (G protein) to regulate phospholipase C activity. Here we report increased accumulation of IP3 in response to caerulein or carbachol in electrically permeabilized rat pancreatic acinar cells. The stable analogues of GTP (guanosine 5'-[gamma-thio]trisphosphate and guanosine 5'-[beta, gamma-imido]triphosphate) stimulate IP3 accumulation and potentiate the effects of caerulein and carbachol. This synergism demonstrates an interaction between receptors, a G protein and phospholipase C. These responses are unaffected by pretreatment of the cells with pertussis or cholera toxins under conditions that produce substantial covalent modification of Gi and Gs, the proteins that couple receptors to adenylate cyclase. We therefore conclude that the G protein that couples receptors to phospholipase C in exocrine pancreas is probably neither Gi nor Gs; instead, we propose that a different G protein mediates this effect.  相似文献   

16.
Incubation of particulate fractions of swine granulosa cells or luteal minces with purified pertussis toxin (islet-activating protein) and [32P]-NAD catalyzed the (32P)-ADP ribosylation of a 41,000 dalton membrane protein. ADP-ribosylation was markedly reduced by prior incubation of intact cells with toxin. The functional relevance of this presumptive inhibitory guanine nucleotide-binding protein in pig granulosa cells was indicated by the ability of prior treatment with pertussis toxin to increase cyclic AMP generation and progesterone production significantly in response to follicle stimulating hormone. Prior cellular intoxication also enhanced cyclic AMP production stimulated by luteinizing hormone and choleratoxin, but not basally or after forskolin. These results demonstrate the presence of an inhibitory guanine nucleotide-binding protein in both the follicular (granulosa cell) and luteal compartments of the mammalian ovary, and indicate its functional relevance in cyclic AMP generation and progesterone secretion.  相似文献   

17.
Three GTP-binding proteins of 50 kDa, 45 kDa and 28 kDa were identified by photoaffinity labelling with [gamma-32P]GTP-gamma-azidoanilide (A-GTP) in the rat liver plasma membrane. Pertussis toxin catalysed ADP-ribosylation of a single protein of 40 kDa. A-GTP had no effect on the basal labeling by pertussis toxin. After u.v. irradiation of the membrane in the presence of A-GTP, the GTP-dependent ADP-ribosylation by cholera toxin was increased, while the basal labelling was not affected. These results suggest that A-GTP interacts specifically with the activatory GTP-binding protein (Gs) and does not interact with the inhibitory GTP-binding protein (Gi). The effects of partial photoinactivation of Gs of the rat liver plasma membrane adenylate cyclase system by A-GTP were studied. U.v. irradiation in the presence of increasing concentrations of the analogue caused progressive decrease in the maximal extent of activation by guanosine 5'-[gamma-thio]triphosphate, but the Ka was not affected. The rate of activation of liver adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate is temperature-dependent. The lag time increased from 0.5 min at 30 degrees C to 2.0-2.5 min at 15 degrees C in the presence of 10 microM-guanosine 5'-[gamma-thio]triphosphate. However, Ka remains unaffected by lowering the temperature. Photoinactivation by A-GTP or competitive inhibition by guanosine 5'-[beta-thio]diphosphate decreases the maximal extent of activation by guanosine 5'-[gamma-thio] triphosphate, but the lag time remains unaffected. The present results support the idea that Gs is tightly associated with the catalytic subunit under basal conditions. The present results also indicate that the transition of an inactive Gs to its active form is the rate-limiting step of the activation of adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate in the intact rat liver plasma membranes.  相似文献   

18.
19.
We have studied the effect of synthetic rat atrial natriuretic factor (ANF) on adenylate cyclase activity in cultured cardiocytes from atria (left and right) and ventricles from neonatal rats. ANF (Arg 101-Tyr 126) inhibited adenylate cyclase activity in a concentration dependent manner in cultured atrial (right and left atria) and ventricular cells. However the inhibition was greater in atrial cells as compared to ventricular cells. The maximal inhibition observed in ventricular cells was about 35% with an apparent Ki of about 10(-10) M, whereas about 55% inhibition with an apparent Ki between 5 X 10(-10) M and 65% inhibition with an apparent Ki of 10(-9) M were observed in right and left atrial cardiocytes respectively. The inhibitory effect of ANF was dependent on the presence of guanine nucleotides. Various hormones and agents such as isoproterenol, prostaglandins, adenosine, forskolin and sodium fluoride stimulated adenylate cyclase activities to various degrees in these atrial and ventricular cardiocytes. ANF inhibited the stimulatory responses of all these agonists, however the degree of inhibition varied for each agent. In addition ANF also inhibited cAMP levels in these cells. These data indicate that ANF receptors are present in cardiocytes and are negatively coupled to adenylate cyclase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号