共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical monitoring in the Dutch Wadden Sea by means of benthic invertebrates and fish 总被引:2,自引:0,他引:2
Karel Essink 《Helgoland Marine Research》1989,43(3-4):435-446
In monitoring, it is of utmost importance to carefully define the purpose, the sampling strategy, as well as the analytical chemical and statistical requirements. Surveys are appropriate for describing the geographical variation in environmental contaminant levels. Repeated surveys and recurrentdata collection at permanent locations provide means of detecting temporal trends. Results are presented here of surveys on pollution by trace metals, polychlorinated biphenyls and organochlorine pesticides in the Ems Estuary and Dutch Wadden Sea usingMytilus edulis, Mya arenaria, Arenicoia marina, Nereis diversicolor andCrangon crangon as test organisms. Trends towards decreasing pollution by mercury are illustrated by monitoring data onMytilus edulis andZoarces viviparus. It is stressed that the results of chemical monitoring in organisms may be interpreted only in termser the biological effects on the basis of relevant toxicological knowledge and/or additional bio-assays. Presented at the VI International Wadden Sea Symposium (Biologische Anstalt Helgoland Wattenmeerstation Sylt, D-2282 List, FRG, 1–4 November 1988) 相似文献
2.
Quantitative zooplankton samples were obtained by vertical tows with a Juday plankton net, in the southern Kara Sea, from November 28 to December 11, 2005 (by an expedition of the Murmansk Marine Biological Institute KSC RAS aboard the nuclear ice-breaker “Soviet Union”). The most abundant meroplankton forms were juveniles of Bivalvia and larvae of Polychaeta (the maximum abundances were 106.2 ind/m3 and 7.5 ind/m3, respectively). The results are discussed in relation to changes in the thermal regime of the Arctic Ocean observed during the recent decades. 相似文献
3.
Jochen H. E. Koop Carola Winkelmann Jochen Becker Claudia Hellmann Christian Ortmann 《Aquatic Ecology》2011,45(4):547-559
Physiological indicators of fitness present a measure of an organism’s response to a changing environment. An analysis of how these organisms allocate and store their energy resources provides an understanding of how they cope with such environmental changes. Each individual has to balance the investment necessary to acquire a certain resource with the energy gained by it. This trade-off can be monitored by measuring several physiological indicators of fitness such as energy storage components, metabolic state or RNA/DNA ratio. Because environmental adaptations and ecological strategies of survival are best examined within the natural environment, our research has to rely on the physiological indicators that are easily accessible in the field. The physiological indicators presented here are significant for an individual’s fitness and in turn lead to reliable values in field-collected samples. Based on our own expertise and on a literature survey, the physiological relevance of the presented indicators is explained. Furthermore, some consideration to the analytical methods used to obtain the physiological indicators is given, and possible errors introduced at the sampling site and during the laboratory procedures are discussed. This work demonstrates that the integration of ecological and physiological expertise facilitates the identification of future ecological problems much earlier than separate approaches of both disciplines alone. 相似文献
4.
Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study 总被引:2,自引:0,他引:2
Florian Mermillod-Blondin Frédérique François-Carcaillet Rutger Rosenberg 《Journal of experimental marine biology and ecology》2005,315(2):187-209
The main objective of this study was to measure the impact of benthic invertebrate diversity on processes occurring at the water-sediment interface. We analyzed the effects of interactions between three shallow water species (Cerastoderma edule, Corophium volutator, and Nereis diversicolor). The impacts of different species richness treatments were measured on sediment reworking, bacterial characteristics, and biogeochemical processes (bromide fluxes, O2 uptake, nutrient fluxes, and porewater chemistry) in sediment cores. The results showed that the three species exhibited different bioturbation activities in the experimental system: C. edule acted as a biodiffusor, mixing particles in the top 2 cm of the sediments; C. volutator produced and irrigated U-shaped tubes in the top 2 cm of the sediments; and N. diversicolor produced and irrigated burrow galleries in the whole sediment cores. C. edule had minor effects on biogeochemical processes, whereas the other species, through their irrigation of the burrows, increased the solute exchange between the water column and the sediment two-fold. These impacts on sediment structure and solute transport increased the O2 consumption and the release of nutrients from sediments. As N. diversicolor burrowed deeper in the sediment than C. volutator, it irrigated a greater volume of sediments, with great impact on the sediment cores.Most treatments with a mixture of species indicated that observed values were often lower than predicted values from the addition of the individual effects of each species, demonstrating a negative interaction among species. This type of negative interaction measured between species on ecosystem processes certainly resulted from an overlap of bioturbation activities among the three species which lived and foraged in the same habitat (water-sediment interface). All treatments with N. diversicolor (in isolation and in mixture) produced similar effect on sediment reworking, water fluxes, nutrient releases, porewater chemistry, and bacterial characteristics. Whichever species associated with N. diversicolor, the bioturbation activities of the worm hid the effect of the other species. The results suggest that, in the presence of several species that use and modify the same sediment space, impact of invertebrates on ecosystem processes was essentially due to the most efficient bioturbator of the community (N. diversicolor). In consequence, the functional traits (mode of bioturbation, depth of burrowing, feeding behaviour) of an individual species in a community could be more important than species richness for some ecosystem processes. 相似文献
5.
The Salton Sea, California's largest inland water body, is an athalassic saline lake with an invertebrate fauna dominated by marine species. The distribution and seasonal dynamics of the benthic macroinvertebrate populations of the Salton Sea were investigated during 1999 in the first survey of the benthos since 1956. Invertebrates were sampled from sediments at depths of 2–12 m, shallow water rocky substrates, and littoral barnacle shell substrates. The macroinvertebrates of the Salton Sea consist of a few invasive, euryhaline species, several of which thrive on different substrates. The principal infaunal organisms are the polychaetes Neanthes succinea Frey & Leuckart and Streblospio benedicti Webster, and the oligochaetes Thalassodrilides gurwitschi Cook, T. belli Hrabe, and an enchytraeid. All but Neanthes are new records for the Sea. Benthic crustacean species are the amphipods Gammarus mucronatus Say, Corophium louisianum Shoemaker, and the barnacle Balanus amphitrite Darwin. Neanthes succinea is the dominant infaunal species on the Sea bottom at depths of 2–12 m. Area-weighted estimates of N. succinea standing stock in September and November 1999 were two orders of magnitude lower than biomass estimated in the same months in 1956. During 1999, population density varied spatially and temporally. Abundance declined greatly in offshore sediments at depths >2 m during spring and summer due to decreasing oxygen levels at the sediment surface, eventually resulting in the absence of Neanthes from all offshore sites >2 m between July and November. In contrast, on shoreline rocky substrate, Neanthes persisted year round, and biomass density increased nearly one order of magnitude between January and November. The rocky shoreline had the highest numbers of invertebrates per unit area, exceeding those reported by other published sources for Neanthes, Gammarus mucronatus, Corophium louisianum, and Balanus amphitrite in marine coastal habitats. The rocky shoreline habitat is highly productive, and is an important refuge during periods of seasonal anoxia for Neanthes and for the other invertebrates that also serve as prey for fish and birds. 相似文献
6.
Recently three biogeographical units were identified along the Chilean coast (the Magellanic Province, an Intermediate Area, and the Peruvian Province), however few studies have focused on the factors and dynamic processes that formed these spatial units (e.g. Rapoport's rule and its causal mechanisms). In this study we used benthic polychaetes of the Chilean coast to evaluate patterns of latitudinal distribution and species richness, and the existence of the three main biogeographical provinces described for the Chilean coast. Additionally, we evaluated the latitudinal Rapoport effects and geometric constraint as a null hypothesis explaining the species richness distribution.
We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 41° and 42°S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile. 相似文献
We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 41° and 42°S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile. 相似文献
7.
Kim S. Greenwood James H. Thorp R. Brent Summers Debra L. Guelda 《Hydrobiologia》2001,462(1-3):169-172
Effects of zebra mussels (Dreissena polymorpha) on populations of amphipods (Gammarus fasciatus) and prosobranch snails (Lithasia obovata) and on nutritional quality of benthic organic matter were examined in 20 artificial streams receiving Ohio River water and containing either mussels or small gravel. Twenty individually-marked snails were placed in each trough, and streams were allowed to colonize with other benthic species for 28 days.Dreissenids positively affected other benthic invertebrates in our stream channels. Compared to gravel channels, Gammarus biomass was significantly higher (P<0.01) in mussel channels, amphipod densities increased 300%, and snail growth rates were 50% greater. Food quality of fine benthic organic matter (FBOM) was greater in mussel channels (i.e. lower C:N), and FBOM was carbon depleted (lower 13C) but nitrogen enriched (higher 15N). Isotope data suggest that detrital FBOM was not the sole food source for snails and amphipods in our channels and that they were assimilating a higher quality portion of this BOM. The overall influence of dreissenids on particular benthic invertebrates may depend on the response and/or susceptibility of those species to biofouling, increased habitat heterogeneity, and changes in the quality and quantity of nutrients. 相似文献
8.
Changes in benthic foraminiferal and mollusk assemblages from the lower part of the Upper Pliocene of the Atsipades Section (Iraklion Basin, central Crete) were studied. The Atsipades Section represents a shallowing-upward sequence from outer shelf blue-gray clays at the bottom of the sequence, deposited below the storm wave base, to shallow inner shelf deposits affected by storm waves at the top. The foraminiferal assemblage at the bottom of the sequence is dominated by Bolivina spathulata, Bolivina dilatata and Uvigerinidae, a microfossil assemblage corresponding to the deepest deposits formed under dysoxic sea-floor conditions. Foraminiferal assemblages of the middle part of the section are highly diversified, predominantly Haynesina depressula, Cassidulina carinata and Reusella spinulosa. The top of the section is mainly characterised by Asterigerinata planorbis, Bolivina pseudoplicata, Cibicides lobatulus and Elphidium sp., a typically epiphytic foraminiferal assemblage which can be correlated with the presence of an algal covered sea-bottom. Within this general environmental trend, a minor shallowing cycle can be differentiated. The boundaries of this cycle can be inferred, based on a substantial microfossil assemblage change and on the coincidence of species diversity maximum and a planktonic/benthic (P/P + B) ratio peak. Nonetheless, upwelling currents and/or over-abundance of nutrients due to continental outflow could also contribute to increased diversity and P/P + B ratio. The character of the mollusk assemblages is in accordance with these trends. Moreover, the increase in diversity and in sculpture constitutes a clear indication of an increase in hydrodynamic energy related to a shallowing-upward trend. 相似文献
9.
Summary The antibacterial efficacy of the methanol extract of the aerial parts of Seseli libanotis by using disc diffusion assay against 107 strains from 52 bacterial species and the chemical composition of the essential
oil using GC/MS analysis were studied for the first time. The minimum inhibitory concentrations (MIC) of single compounds
were determined by the microbroth dilution method. Gas chromatography–mass spectrophotometry analyses allowed 13 compounds
to be determined; the main constituents of the essential oil of aerial parts of Seseli libanotis were trans-caryophyllene (20.39%), spathulenol (11.89%), (−)-caryophyllene oxide (11.47%), euasarone (10.66%) and delta-cadinene (9.16%).
The methanol extract of Seseli libanotis had a broad-spectrum antibacterial activity (>14 mm inhibition zone in diameter) in particular against Bacillus cereus, Bacillus dipsauri, Bacillus lentimorbus, Bacillus sphaericus, Bacillus subtilis, Corynebacterium ammoniagenes,
Kocuria rosea, Neisseria subflava and Micrococcus lylae. These inhibitory effects are interesting in relation to the prevention of microbial contamination in foods. 相似文献
10.
Lindsay SM 《Integrative and comparative biology》2010,50(4):479-493
Many marine invertebrates are able to regenerate lost tissue following injury, but regeneration can come at a cost to individuals in terms of reproduction, behavior and physiological condition, and can have effects that reach beyond the individual to impact populations, communities, and ecosystems. For example, removal and subsequent regeneration of clams' siphons, polychaetes' segments, and brittlestars' arms can represent significant energetic input to higher trophic levels. In marine soft-sediment habitats, injury changes infaunal bioturbation rates and thus secondarily influences sediment-mediated competition, adult-larval interactions, and recruitment success. The importance of injury and regeneration as factors affecting the ecology of marine invertebrate communities depends on the frequency of injury, as well as on individual capacity for, and speed of, regeneration. A key question to answer is: "How frequently are marine benthic invertebrates injured?" Here, I review the sources and the frequencies of injury in a variety of marine invertebrates from different benthic habitats, discuss challenges, and approaches for accurately determining injury rates in the field, consider evidence for species-specific, temporal and geographic variation in injury rates, and present examples of indirect effects of injury on marine invertebrates to illustrate how injury and regeneration can modify larger-scale ecological patterns and processes. 相似文献
11.
Small-sized invertebrates in a gravel stream: community structure and variability of benthic rotifers 总被引:4,自引:0,他引:4
J. M. Schmid-Araya 《Freshwater Biology》1998,39(1):25-39
1. The Rotifera assemblage inhabiting the streambed surface and the hyporheic zone of a gravel stream was investigated between October 1991 and October 1992. Forty-two species of Monogononta and 27 of Bdelloidea were identified. Within these two classes, dominant species differed between the surface and the hyporheic zone. At the streambed surface, the abundance of monogonont rotifers showed a seasonal pattern with significantly higher densities in pools, whereas bdelloids showed no clear temporal trend and did not differ significantly among sites. In the hyporheic zone, the depth distribution differed among the two rotifer groups, bdelloids occurred in highest densities between 0 and 30 cm sediment depth, while monogononts were most abundant at greater depths.
2. Species composition differed greatly between successive sampling dates (min. 5 to max. 26 days) at both the streambed surface and the hyporheos. At the streambed surface and in the shallow hyporheos a significantly higher percentage of species was replaced in riffles than in pools.
3. Few measured hydrophysical variables were associated with the Rotifera assemblage structure. At the streambed surface, species richness was negatively correlated with water temperature and substratum heterogeneity, and Monogononta rotifer densities declined with water depth and substratum roughness.
4. Permutation tests carried out on temporal serial correlations showed that, at riffle sites at the streambed surface, bdelloid rotifer densities, rotifer species richness and diversity did not differ significantly from a temporal, near-random pattern. The hyporheic rotifer assemblage followed similar near-random patterns. 相似文献
2. Species composition differed greatly between successive sampling dates (min. 5 to max. 26 days) at both the streambed surface and the hyporheos. At the streambed surface and in the shallow hyporheos a significantly higher percentage of species was replaced in riffles than in pools.
3. Few measured hydrophysical variables were associated with the Rotifera assemblage structure. At the streambed surface, species richness was negatively correlated with water temperature and substratum heterogeneity, and Monogononta rotifer densities declined with water depth and substratum roughness.
4. Permutation tests carried out on temporal serial correlations showed that, at riffle sites at the streambed surface, bdelloid rotifer densities, rotifer species richness and diversity did not differ significantly from a temporal, near-random pattern. The hyporheic rotifer assemblage followed similar near-random patterns. 相似文献
12.
13.
We relate the spatial variability in the distribution of benthic taxa of the Beaufort Sea to oceanographic characteristics of their habitat with the goal of illustrating potential mechanisms linking climate change to Arctic marine communities. Offshore fish of the Beaufort Sea have not been surveyed since 1977 and no synchronous measures of fish distribution and the oceanographic characteristics of their habitat have been made previously. A survey was conducted during August 2008 in the western Beaufort Sea, Alaska. The distribution and abundance of benthic fish and invertebrates were assessed with standard bottom trawl survey methods. Oceanographic data were collected at each trawl station and at several locations between stations. The dominant benthic taxa, Polar cod (Boreogadus saida), eelpouts (Lycodes sp.), and snow crab (Chionoecetes opilio) were associated with cold (<?1.5°C), high salinity (>33) water found offshore of the shelf break, derived from the Chukchi Sea. These waters are expected to be high in secondary productivity, such that we hypothesize that the distribution of fish and crab was driven by conditions favorable for successful foraging. Predictions of the impacts of climate change require an understanding of the mechanisms linking the distribution and abundance of marine organisms to their oceanographic habitat. Our study documents the association of dominant benthic fish and invertebrates of the Beaufort Sea with specific water mass types and is thus a step toward this understanding. 相似文献
14.
A laboratory and a field test for flight initiation ofTrichogramma brassicae Bezdenko (Hymenoptera, Trichogrammatidae) (synonymous toT. maidis Pintureau et Voegele) were developed with the aim to establish a simple, cheap and quick flight quality control method forTrichogramma producers. The flight quality of four strains ofT. brassicae reared onEphestia kuehniella Zeller eggs were compared. The material tested consisted of four strains: two strains reared for two (F2) and 39 to 42 (F39–42) generations onE. kuehniella eggs without storage treatment, a diapause strain reared six generations (F6) onE. kuehniella eggs and a commercial strain also reared onE. kuehniella eggs whose production and storage conditions were unknown. Clear differences in flight activity among strains were observed. Both, the F2 and commercial strain showed significantly better flight activity under laboratory conditions compared to the other strains. Flight field cage experiments were made for comparison between field and laboratory results. Similar differences among strains in field cage experiments were observed when compared to laboratory tests. 相似文献
15.
Guangxing Bai Jianyong Li Bruce M. Christensen Timothy P. Yoshino 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1996,114(4):353-359
Phenoloxidase (PO) activity in the albumen gland (AG) and egg masses (EM) ofBiomphalaria glabrata was assessed using high-performance liquid chromatography combined with electrochemical detection and colorimetric techniques. Both AG and EM extracts catalyzed the hydroxylation ofl-tyrosine (monophenol oxidase activity, MPO) and oxidation ofl-dopa (diphenol oxidase activity, DPO). However, no PO activity was found in the ovotestis. Both MPO and DPO activities in AG and EM were significantly inhibited by 1-phenyl-2-thiourea and inactivated by boiling. Approximately 35% of MPO and 44% of DPO activities were detected in the soluble fraction of homogenized EM, in contrast to that of homogenized AG, which contained about 5% and 12%, respectively, of MPO and DPO activities. N-acetyl-dopamine, a diphenolic compound, enhanced the hydroxylation of tyrosine by the PO. The presence of both MPO and DPO activities also was confirmed by the accelerated accumulation of dopachrome during incubation of EM extracts withl-tyrosine in the absence of ascorbate. Temperature and pH optima for this enzyme were 30°C and 7.5, respectively. The potential roles of PO in egg formation inB. glabrata are discussed. 相似文献
16.
Tsoukatou M Hellio C Vagias C Harvala C Roussis V 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(1-2):161-171
The defense roles and the antifouling activity of the organic extracts and the major metabolites of the sponges Ircinia oros, I. variabilis and I. spinosula were investigated. The antifeedant activity was tested in experimental aquaria on the generalist predator fish Thalassoma pavo as well as in coastal ecosystems rich in fishes. Some of the major metabolites exhibited high levels of antifeedant activity. The antifouling activity was tested in laboratory assays, against representatives of the major groups of fouling organisms (marine bacteria, marine fungi, diatoms, macroalgae and mussels). All extracts showed promising levels of activity. As was expected, no single extract was active in all tests and some fractions that were effective against one organism showed little or no activity against the others. The high but variable level of antifouling activity in combination with the absence of toxicity (tested on the development of oyster and sea urchin larvae) shows the potential of these metabolites to become ingredients in environmentally friendly antifouling preparations. 相似文献
17.
Complement activity in the egg cytosol of zebrafish Danio rerio: evidence for the defense role of maternal complement components 总被引:1,自引:0,他引:1
Most fish embryos that develop externally are exposed to an environment full of microbes. How they survive microbial attacks are not understood to date. Here we demonstrated that the egg cytosol prepared from the newly fertilized eggs of zebrafish Danio rerio is capable of killing the Gram-negative bacterium Escherichia coli, via in vitro assay system of the complement activity established. All findings indicate that it is the complement system operating via the alternative pathway that is attributable to the bacteriolytic activity. This is the first report providing the evidence for the functional role of the maternal complement components in fish eggs, paving the way for study of maternal immunity in other organisms whose eggs are fertilized in vitro. 相似文献
18.
19.
RACHEL PRZESLAWSKI SHANE AHYONG MARIA BYRNE GERT WÖRHEIDE PAT HUTCHINGS 《Global Change Biology》2008,14(12):2773-2795
Climate change is threatening tropical reefs across the world, with most scientists agreeing that the current changes in climate conditions are occurring at a much faster rate than in the past and are potentially beyond the capacity of reefs to adapt and recover. Current research in tropical ecosystems focuses largely on corals and fishes, although other benthic marine invertebrates provide crucial services to reef systems, with roles in nutrient cycling, water quality regulation, and herbivory. We review available information on the effects of environmental conditions associated with climate change on noncoral tropical benthic invertebrates, including inferences from modern and fossil records. Increasing sea surface temperatures may decrease survivorship and increase the developmental rate, as well as alter the timing of gonad development, spawning, and food availability. The broad latitudinal distribution and associated temperature ranges of several pantropical taxa suggest that some reef communities may have an in‐built adaptive capacity. Tropical benthic invertebrates will also show species‐specific sublethal and lethal responses to sea‐level rise, ocean acidification, physical disturbance, runoff, turbidity, sedimentation, and changes in ocean circulation. In order to accurately predict a species' response to these stressors, we must consider the magnitude and duration of exposure to each stressor, as well as the physiology, mobility, and habitat requirements of the species. Stressors will not act independently, and many organisms will be exposed to multiple stressors concurrently, including anthropogenic stressors. Environmental changes associated with climate change are linked to larger ecological processes, including changes in larval dispersal and recruitment success, shifts in community structure and range extensions, and the establishment and spread of invasive species. Loss of some species will trigger economic losses and negative effects on ecosystem function. Our review is intended to create a framework with which to predict the vulnerability of benthic invertebrates to the stressors associated with climate change, as well as their adaptive capacity. We anticipate that this review will assist scientists, managers, and policy‐makers to better develop and implement regional research and management strategies, based on observed and predicted changes in environmental conditions. 相似文献
20.
David R. Gloeckner Joseph J. Luczkovich 《Journal of experimental marine biology and ecology》2008,357(2):109-120
Trophic cascades are predicted to occur when the abundance of predators is increased, directly reducing the abundance of the intermediate prey and indirectly increasing the abundance of the prey at the base of a food web. Mixed trophic impact analysis of a network model developed for Apalachee Bay, near St. Marks, FL, USA predicted such a trophic cascade, in that increased abundance of juvenile gulf flounder Paralichthys albigutta (x¯ = 149 mm SL, effective trophic level 3.9) should have a negative impact on juvenile spot Leiostomus xanthurus (x¯ = 30 mm SL, effective trophic level 2.9) and a positive impact on benthic polychaetes (effective trophic levels 2.3 for deposit feeders and 3.0 for predatory polychaetes) in Halodule wrightii seagrass beds. We tested the predictions of the mixed trophic impact analysis by manipulating the abundance of the high trophic-level species (juvenile gulf flounder) in a cage-exclusion study in the North River, near Harkers Island, NC, USA. We compared the polychaete communities in St. Marks, FL and Harkers Island, NC, and showed that they are 51% similar (Jaccard's Index) at the family level, with the same eight dominant families (Nereidae, Capitellidae, Syllidae, Spionidae, Cirratulidae, Terebellidae, Sabellidae, and Maldanidae) present in both locations. We used 24 open-bottom cages to enclose the benthos and its seagrass-associated animal communities. We manipulated each cage by assigning it to one of the following treatments: (1) inclusion of fishes in upper and intermediate trophic levels (1 juvenile gulf flounder and 10 juvenile spot, the flounder + spot treatment); (2) inclusion of the intermediate predator (10 juvenile spot with no gulf flounder, the spot-only treatment); and (3) no fish added (unmanipulated controls). Core samples taken within the cages provided pre- and post-experimental measures of polychaete density and biomass, and the difference in density and biomass were used as response variables. At the end of the experiment, we collected, weighed, and analyzed the gut contents of all juvenile spot present in the cages. Juvenile pinfish (Lagodon rhomboides, x¯ = 30 mm SL) were present at the end of the study, having arrived as larvae or being trapped during cage set-up, and these fish were also examined, because they also eat polychaetes and their natural densities exceeded our introduced spot densities. Significant differences among treatments were detected for the polychaete family Terebellidae for both the change in density and biomass (pre-experiment − post-experiment). Densities of the Terebellidae changed in the direction predicted by the network model's impact analysis, declining in the cages with spot added compared with the control cages. Analyses of the other response variables (post-experiment spot and pinfish densities and biomass, difference between pre- and post-experiment polychaete densities and biomass for other families, and post-experiment spot and pinfish stomach content biomass) showed no significant differences among treatments. Several variables (Nereidae densities, pinfish densities and biomass, and pinfish stomach content biomass) varied between cages with low and high seagrass cover (significant blocking effect, P < 0.001). Nereidae densities declined significantly in cages with high (73%) rather than with low coverage (31% cover) of seagrass. Pinfish density and biomass were significantly greater in the high seagrass cages at the end of the experiments (P < 0.001), suggesting that dense seagrass attracted them. We conclude that the high density of pinfish in dense seagrass was responsible for the decline in density of the Nereidae. The direct effect of intermediate predators (pinfish feeding on polychaete prey) can be influenced by preferential recruitment of fishes to structurally complex habitats. The direction of change of indirect effects, but not the magnitude, in multi-trophic-level food webs can be predicted by the mixed trophic impact analysis of network models. However, these indirect effects are likely to be small in magnitude relative to direct effects and may be difficult to detect experimentally, especially in low-power experimental caging studies with natural fluctuations in recruitment rates of competitor species. 相似文献