首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evolution of Bacillus thuringiensis Cry toxins insecticidal activity   总被引:2,自引:0,他引:2  
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate‐limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.  相似文献   

2.
How to cope with insect resistance to Bt toxins?   总被引:5,自引:1,他引:4  
Transgenic Bt crops producing insecticidal crystalline proteins from Bacillus thuringiensis, so-called Cry toxins, have proved useful in controlling insect pests. However, the future of Bt crops is threatened by the evolution of insect resistance. Understanding how Bt toxins work and how insects become resistant will provide the basis for taking measures to counter resistance. Here we review possible mechanisms of resistance and different strategies to cope with resistance, such as expression of several toxins with different modes of action in the same plant, modified Cry toxins active against resistant insects, and the potential use of Cyt toxins or a fragment of cadherin receptor. These approaches should provide the means to assure the successful use of Bt crops for an extended period of time.  相似文献   

3.
Many roads to resistance: how invertebrates adapt to Bt toxins   总被引:13,自引:0,他引:13  
The Cry family of Bacillus thuringiensis insecticidal and nematicidal proteins constitutes a valuable source of environmentally benign compounds for the control of insect pests and disease agents. An understanding of Cry toxin resistance at a molecular level will be critical to the long-term utility of this technology; it may also shed light on basic mechanisms used by other bacterial toxins that target specific organisms or cell types. Selection and cross-resistance studies have confirmed that genetic adaptation can elicit varying patterns of Cry toxin resistance, which has been associated with deficient protoxin activation by host proteases, and defective Cry toxin-binding cell surface molecules, such as cadherins, aminopeptidases and glycolipids. Recent work also suggests Cry toxin resistance may be induced in invertebrates as an active immune response. The use of model invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, as well as advances in insect genomics, are likely to accelerate efforts to clone Cry toxin resistance genes and come to a detailed and broad understanding of Cry toxin resistance.  相似文献   

4.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

5.
6.
Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control, but insect adaptation can reduce their efficacy. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.  相似文献   

7.
Expression of Bacillus thuringiensis delta-endotoxins has proven to be a successful strategy for obtaining insect resistance in transgenic plants. Drawbacks of expression of a single resistance gene are the limited target spectrum and the potential for rapid adaptation of the pest. Hybrid toxins with a wider target spectrum in combination with existing toxins may be used as tool to mitigate these problems. In this study, Desiree potato plants were genetically modified to resist attack by insect species belonging to the orders Coleoptera and Lepidoptera, through the insertion of such a hybrid gene, SN19. Transgenic plants were shown to be resistant against Colorado potato beetle larvae and adults, potato tuber moth larvae, and European corn borer larvae. These are the first transgenic plants resistant to pests belonging to two different insect orders. In addition, the target receptor recognition of this hybrid protein is expected to be different from Cry proteins currently in use for these pests. This makes it a useful tool for resistance management strategies.  相似文献   

8.
δ-Endotoxins produced by Bacillus thuringiensis (Bt) have been used as bio-pesticides for the control of lepidopteran insect pests. Garlic (Allium sativum L.) leaf agglutinin (ASAL), being toxic to several sap-sucking pests and some lepidopteran pests, may be a good candidate for pyramiding with δ-endotoxins in transgenic plants for enhancing the range of resistance to insect pests. Since ASAL shares the midgut receptors with Cry1Ac in Helicoverpa armigera, there is possibility of antagonism in their toxicity. Our study demonstrated that ASAL increased the toxicity of Cry1Ac against H. armigera while Cry1Ac did not alter the toxicity of ASAL against cotton aphids. The two toxins interacted and increased binding of each other to brush border membrane vesicle (BBMV) proteins and to the two important receptors, alkaline phosphatase (ALP) and aminopeptidase N (APN). The results indicated that the toxins had different binding sites on the ALP and APN but influenced mutual binding. We conclude that ASAL can be safely employed with Cry1Ac for developing transgenic crops for wider insect resistance.  相似文献   

9.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

10.
The successful use of Bacillus thuringiensis insecticidal toxins to control agricultural pests could be undermined by the evolution of insect resistance. Under selection pressure in the laboratory, a number of insects have gained resistance to the toxins, and several cases of resistance in the diamondback moth have been reported from the field. The use of protein engineering to develop novel toxins active against resistant insects could offer a solution to this problem. The display of proteins on the surface of phages has been shown to be a powerful technology to search for proteins with new characteristics from combinatorial libraries. However, this potential of phage display to develop Cry toxins with new binding properties and new target specificities has hitherto not been realized because of the failure of displayed Cry toxins to bind their natural receptors. In this work we describe the construction of a display system in which the Cry1Ac toxin is fused to the amino terminus of the capsid protein D of bacteriophage lambda. The resultant phage was viable and infectious, and the displayed toxin interacted successfully with its natural receptor.  相似文献   

11.
The successful use of Bacillus thuringiensis insecticidal toxins to control agricultural pests could be undermined by the evolution of insect resistance. Under selection pressure in the laboratory, a number of insects have gained resistance to the toxins, and several cases of resistance in the diamondback moth have been reported from the field. The use of protein engineering to develop novel toxins active against resistant insects could offer a solution to this problem. The display of proteins on the surface of phages has been shown to be a powerful technology to search for proteins with new characteristics from combinatorial libraries. However, this potential of phage display to develop Cry toxins with new binding properties and new target specificities has hitherto not been realized because of the failure of displayed Cry toxins to bind their natural receptors. In this work we describe the construction of a display system in which the Cry1Ac toxin is fused to the amino terminus of the capsid protein D of bacteriophage lambda. The resultant phage was viable and infectious, and the displayed toxin interacted successfully with its natural receptor.  相似文献   

12.
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K+ ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K+ ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.  相似文献   

13.
Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC–MS/MS). The LC–MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda.  相似文献   

14.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

15.
The most notable characteristic of Bacillus thuringiensis is its ability to produce insecticidal proteins. More than 300 different proteins have been described with specific activity against insect species. We report the molecular and insecticidal characterization of a novel cry gene encoding a protein of the Cry1I group with toxic activity towards insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. PCR analysis detected a DNA sequence with an open reading frame of 2.2 kb which encodes a protein with a molecular mass of 80.9 kDa. Trypsin digestion of this protein resulted in a fragment of ca. 60 kDa, typical of activated Cry1 proteins. The deduced sequence of the protein has homologies of 96.1% with Cry1Ia1, 92.8% with Cry1Ib1, and 89.6% with Cry1Ic1. According to the Cry protein classification criteria, this protein was named Cry1Ia7. The expression of the gene in Escherichia coli resulted in a protein that was water soluble and toxic to several insect species. The 50% lethal concentrations for larvae of Earias insulana, Lobesia botrana, Plutella xylostella, and Leptinotarsa decemlineata were 21.1, 8.6, 12.3, and 10.0 microg/ml, respectively. Binding assays with biotinylated toxins to E. insulana and L. botrana midgut membrane vesicles revealed that Cry1Ia7 does not share binding sites with Cry1Ab or Cry1Ac proteins, which are commonly present in B. thuringiensis-treated crops and commercial B. thuringiensis-based bioinsecticides. We discuss the potential of Cry1Ia7 as an active ingredient which can be used in combination with Cry1Ab or Cry1Ac in pest control and the management of resistance to B. thuringiensis toxins.  相似文献   

16.
17.
Bacillus thuringiensis bacteria produce different insecticidal proteins known as Cry and Cyt toxins. Among them the Cyt toxins represent a special and interesting group of proteins. Cyt toxins are able to affect insect midgut cells but also are able to increase the insecticidal damage of certain Cry toxins. Furthermore, the Cyt toxins are able to overcome resistance to Cry toxins in mosquitoes. There is an increasing potential for the use of Cyt toxins in insect control. However, we still need to learn more about its mechanism of action in order to define it at the molecular level. In this review we summarize important aspects of Cyt toxins produced by Bacillus thuringiensis, including current knowledge of their mechanism of action against mosquitoes and also we will present a primary sequence and structural comparison with related proteins found in other pathogenic bacteria and fungus that may indicate that Cyt toxins have been selected by several pathogenic organisms to exert their virulence phenotypes.  相似文献   

18.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.  相似文献   

19.
ABSTRACT:?

Insect-resistant transgenic plants have become an important tool for the protection of crops against insect pests. The acreage of insecticidal transgenic plants is expected to increase significantly in the near future. The bacterium Bacillus thuringiensis is currently the source of insecticidal proteins in commercial insect-resistant transgenic plants and will remain the most important source during the next decade. Insect resistance to B. thuringiensis Cry toxins is the main problem. Only one species, the diamondback moth, has evolved a resistance to B. thuringiensis-based formulations under field conditions. However, many other insect species were selected for resistance under laboratory conditions, indicating that there is a potential for evolution of resistance in most major pests. Many studies were conducted to elucidate the mode of action of the Cry toxins, the mechanisms and genetics of resistance, and the various factors influencing its development. This article reviews insect resistance to B. thuringiensis insecticidal proteins and related aspects, including the development of insect-resistant transgenic plants, B. thuringiensis toxins, their mode of action, mechanisms, stability, and genetics of resistance and management strategies for delaying resistance.  相似文献   

20.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号