首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. Its physicochemical properties affect microbial distributions inside the soil matrix, metagenome extraction and its subsequent analyses. To better understand the bias inherent to soil metagenome 'processing', we focus on soil physicochemical properties and their effects on the perceived bacterial distribution. In the light of this information, each step of soil metagenome processing is then discussed, with an emphasis on strategies for optimal soil sampling. Then, the interaction of cells and DNA with the soil matrix and the consequences for microbial DNA extraction are examined. Soil DNA extraction methods are compared and the veracity of the microbial profiles obtained is discussed. Finally, soil metagenomic sequence analysis and exploitation methods are reviewed.  相似文献   

2.
Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin–Benson–Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.  相似文献   

3.
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.  相似文献   

4.
Accessing the soil metagenome for studies of microbial diversity   总被引:1,自引:0,他引:1  
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.  相似文献   

5.
Metagenomic gene discovery: past, present and future   总被引:22,自引:0,他引:22  
It is now widely accepted that the application of standard microbiological methods for the recovery of microorganisms from the environment has had limited success in providing access to the true extent of microbial biodiversity. It follows that much of the extant microbial genetic diversity (collectively termed the metagenome) remains unexploited, an issue of considerable relevance to a wider understanding of microbial communities and of considerable importance to the biotechnology industry. The recent development of technologies designed to access this wealth of genetic information through environmental nucleic acid extraction has provided a means of avoiding the limitations of culture-dependent genetic exploitation.  相似文献   

6.
The human microbiome: at the interface of health and disease   总被引:3,自引:0,他引:3  
Interest in the role of the microbiome in human health has burgeoned over the past decade with the advent of new technologies for interrogating complex microbial communities. The large-scale dynamics of the microbiome can be described by many of the tools and observations used in the study of population ecology. Deciphering the metagenome and its aggregate genetic information can also be used to understand the functional properties of the microbial community. Both the microbiome and metagenome probably have important functions in health and disease; their exploration is a frontier in human genetics.  相似文献   

7.
Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.  相似文献   

8.
Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances.  相似文献   

9.
Phosphorus cycling exerts significant influence upon soil fertility and productivity – processes largely controlled by microbial activity. We adopted phenotypic and metagenomic approaches to investigate phosphatase genes within soils. Microbial communities in bare fallowed soil showed a marked capacity to utilise phytate for growth compared with arable or grassland soil communities. Bare fallowed soil contained lowest concentrations of orthophosphate. Analysis of metagenomes indicated phoA, phoD and phoX, and histidine acid and cysteine phytase genes were most abundant in grassland soil which contained the greatest amount of NaOH‐EDTA extractable orthophosphate. Beta‐propeller phytase genes were most abundant in bare fallowed soil. Phylogenetic analysis of metagenome sequences indicated the phenotypic shift observed in the capacity to mineralise phytate in bare fallow soil was accompanied by an increase in phoD, phoX and beta‐propeller phytase genes coding for exoenzymes. However, there was a remarkable degree of genetic similarity across the soils despite the differences in land‐use. Predicted extracellular ecotypes were distributed across a greater range of soil structure than predicted intracellular ecotypes, suggesting that microbial communities subject to the dual stresses of low nutrient availability and reduced access to organic material in bare fallowed soils rely upon the action of exoenzymes.  相似文献   

10.
Investigation of microbial communities of Antarctica soils is a very important field of research that expands our knowledge of microbial participation in primary soil formation and specific features of their communities in extreme habitats, and it is of considerable interest in directed search of for microorganisms as potential biotechnological objects. The results of long-term (2012–2017) complex studies on soil microbial communities of the Russian East Antarctica polar stations at Shirmakher oasis (Novolazarevskaya station), the Larsemann Hills (Progress station), and the Tala Hills (Molodezhnaya station) are presented in this review. The assessment of biomass of soil microorganisms by the methods of direct microscopy has been carried out for the first time for this region. The general amount of microbial biomass is small; the fungi dominate (77–99%). The unique features of Antarctic soils are the high content and morphological diversity of small forms of microorganisms: fungi are presented by mainly single-celled structures (small spores and yeasts), while bacteria by ultrafine (filtering) forms. At the same time, microorganisms can significantly contribute to such important ecological functions of soil as the emission of greenhouse gases, especially during the warm season with the stable positive temperatures of the soil. This should be considered during creation of models and forecasts of global warming. The use of various isolation techniques for the analysis of the soil microbial population, together with the succession approach, significantly expand the information about taxonomic diversity of cultivated fungi and bacteria in Antarctica soils.  相似文献   

11.
Contamination of soil with petroleum compounds is of concern worldwide. Although there are a variety of physical and chemical technologies available to remediate petroleum waste sites, biological methods are often used due to lower cost and public acceptance. Growth and enhanced activity of microbial communities in contaminated soil is a key factor for the success of bioremediation. Establishing vegetation in petroleum-contaminated soil may enhance microbial activity and remediation success even further by providing root exudates to the rhizosphere microorganisms. In this study, microorganisms were characterized in petroleum-contaminated soils and sediments quantitatively and qualitatively based on enumeration and metabolic diversity assessments. Contaminated soils and sediments were obtained from a phytoremediation field demonstration project in California. Microbial numbers in the unvegetated soil, based on plate counts and most probable number of hydrocarbon degraders, were significantly lower than the vegetated soils. Metabolic microbial characterization using BIOLOG was also conducted and based on principle component analysis (PCA), there was a distinct difference between the metabolic diversity of microbial communities in vegetated and unvegetated soils. Results from this research indicate that the presence and type of plants, and level of contamination may greatly influence microbial communities in polluted soils.  相似文献   

12.
Microbial diversity and function in soil: from genes to ecosystems   总被引:26,自引:0,他引:26  
Soils sustain an immense diversity of microbes, which, to a large extent, remains unexplored. A range of novel methods, most of which are based on rRNA and rDNA analyses, have uncovered part of the soil microbial diversity. The next step in the era of microbial ecology is to extract genomic, evolutionary and functional information from bacterial artificial chromosome libraries of the soil community genomes (the metagenome). Sophisticated analyses that apply molecular phylogenetics, DNA microarrays, functional genomics and in situ activity measurements will provide huge amounts of new data, potentially increasing our understanding of the structure and function of soil microbial ecosystems, and the interactions that occur within them. This review summarizes the recent progress in studies of soil microbial communities with focus on novel methods and approaches that provide new insight into the relationship between phylogenetic and functional diversity.  相似文献   

13.
ABSTRACT: BACKGROUND: The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions. A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth. RESULTS: The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the delta-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth. CONCLUSIONS: Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms' identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.  相似文献   

14.
Glacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland). The SSDs were characterized by an increasing vegetation cover, from barren soil, to biological soil crust, to sparsely vegetated soil and finally to vegetated soil. Results suggested that SSD significantly influenced microbial genetic potential, with the lowest functional diversity surprisingly occurring in the vegetated soils. Overall, carbohydrate metabolism and secondary metabolite biosynthesis genes overrepresented in vegetated soils, which could be partly attributed to plant–soil feedbacks. For C degradation, glycoside hydrolase genes enriched in vegetated soils, while auxiliary activity and carbohydrate esterases genes overrepresented in barren soils, suggested high labile C degradation potential in vegetated, and high recalcitrant C degradation potential in barren soils. For N-cycling, organic N degradation and synthesis genes dominated along succession, and gene families involved in nitrification were overrepresented in barren soils. Our study provides new insights into how the microbial genetic potential changes during soil formation along the Damma glacier forefield.  相似文献   

15.
盐碱土是陆地表面生态脆弱区域。它与荒漠化过程相伴而生,不但造成了资源的破坏、农业生产的巨大损失,而且还对生物圈和生态环境构成威胁。研究盐碱地植物根际土壤微生物群落的多样性,对于盐碱土壤的植被恢复和生态重建具有重要意义。运用PCR-DGGE技术和Biolog微平板法,对大庆盐碱地9种不同植物根际土壤微生物结构和功能的多样性进行了分析。结果表明,不同植物根际土壤微生物组成不同,同一科的植物具有相似的微生物组成。对11个克隆进行了序列测定,发现这一地区植物根际优势微生物菌群为变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)。利用Biolog微平板法分析了微生物群落功能多样性。结果表明,不同植物根际土壤细菌群落对底物碳源的代谢特征存在着一定的差异,其中豆科的野大豆根际土壤细菌对底物碳源的代谢能力最强。  相似文献   

16.
Cultivation-independent analyses of soil microbial community structures are frequently used to describe microbiological soil characteristics. Semi-automated terminal restriction fragment length polymorphism (T-RFLP) analyses yield high-resolution genetic profiles of highly diverse soil microbial communities and hold great potential for use in routine soil quality monitoring. A serious limitation of T-RFLP analyses has been the inability to reliably affiliate observed terminal restriction fragments (T-RF) to phylogenetic groups. In the study presented here, we were able to overcome this limitation of T-RFLP. With a combination of adapter ligation, fragment size selection, and re-amplification with adapter site specific PCR, we were able to isolate a T-RF-fraction of a narrow size-range containing a T-RF that was significantly more abundant in heavy metal amended soils. Cloning the size-selected T-RF fraction allowed for the efficient isolation of clones containing this specific T-RF. Sequence determination and phylogenetic inference in RDP-II affiliated the sequence to unclassified cyanobacteria. Specific primer design and PCR amplification from bulk soil DNA allowed for independent confirmation of the results from bacterial T-RFLP and T-RF cloning. Our results show that specific T-RFs can be efficiently isolated and identified, and that the adapter ligation approach holds great potential for genetic profiling and for identification of community components of interest.  相似文献   

17.
Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.  相似文献   

18.
In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth’s diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments.  相似文献   

19.
Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.  相似文献   

20.
AIMS: Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. METHODS AND RESULTS: We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. CONCLUSIONS: Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号