首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,123(6):1789-1796
alpha-Thrombin induced a change in the cell morphology of IIC9 fibroblasts from a semiround to an elongated form, accompanied by an increase in stress fibers. Incubation of the cells with phospholipase D (PLD) from Streptomyces chromofuscus and exogenous phosphatidic acid (PA) caused similar morphological changes, whereas platelet-derived growth factor (PDGF) and phorbol 12-myristate 13-acetate (PMA) induced different changes, e.g., disruption of stress fibers and cell rounding. alpha-Thrombin, PDGF, and exogenous PLD increased PA by 20-40%, and PMA produced a smaller increase. alpha-Thrombin and exogenous PLD produced rapid increases in the amount of filamentous actin (F-actin) that were sustained for at least 60 min. However, PDGF produced a transient increase of F-actin at 1 min and PMA caused no significant change. Dioctanoylglycerol was ineffective except at 50 micrograms/ml. Phospholipase C from Bacillus cereus, which increased diacylglycerol (DAG) but not PA, did not change F-actin content. Down-regulation of protein kinase C (PKC) did not block actin polymerization induced by alpha-thrombin. H-7 was also ineffective. Exogenous PA activated actin polymerization with a significant effect at 0.01 microgram/ml and a maximal increase at 1 microgram/ml. No other phospholipids tested, including polyphosphoinositides, significantly activated actin polymerization. PDGF partially inhibited PA-induced actin polymerization after an initial increase at 1 min. PMA completely or largely blocked actin polymerization induced by PA or PLD. These results show that PC-derived PA, but not DAG or PKC, activates actin polymerization in IIC9 fibroblasts, and indicate that PDGF and PMA have inhibitory effects on PA-induced actin polymerization.  相似文献   

2.
3.
Motility is associated with the ability to extend F-actin-rich protrusions and depends on free barbed ends as new actin polymerization sites. To understand the function and regulation of different proteins involved in the process of generating barbed ends, e.g., cofilin and Arp2/3, fixed cell approaches have been used to determine the relative barbed end concentration in cells. The major disadvantages of these approaches are permeabilization and fixation of cells. In this work, we describe a new live-cell time-lapse microscopy assay to determine the increase of barbed ends after cell stimulation that does not use permeabilization and provides a better time resolution. We established a metastatic carcinoma cell line (MTLn3) stably expressing GFP-beta-actin at physiological levels. Stimulation of MTLn3 cells with epidermal growth factor (EGF) causes rapid and transient lamellipod protrusion along with an increase in actin polymerization at the leading edge, which can be followed in live cell experiments. By measuring the increase of F-actin at the leading edge vs. time, we were able to determine the relative increase of barbed ends after stimulation with a high temporal resolution. The F-actin as well as the barbed end concentration agrees well with published data for this cell line. Using this newly developed assay, a decrease in lamellipod extension and a large reduction of barbed ends was documented after microinjecting an anti-cofilin function blocking antibody. This assay has a high potential for applications where rapid changes in the dynamic filament population are to be measured.  相似文献   

4.
Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m.  相似文献   

5.
We have addressed the question whether water is part of the G- to F-actin polymerization reaction. Under osmotic stress, the critical concentration for G-Ca-ATP actin was reduced for six different osmolytes. These results are interpreted as showing that reducing water activity favored the polymerized state. The magnitude of the effect correlated, then saturated, with increasing MW of the osmolyte and suggested that up to 10-12 fewer water molecules were associated with actin when it polymerized. By contrast, osmotic effects were insignificant for Mg-ATP actin. The nucleotide binding site of the Mg conformation is more closed than the Ca and more closely resembles the closed actin conformation in the polymerized state. These results suggest that the water may come from the cleft of the nucleotide binding site.  相似文献   

6.
Using cell permeabilization, a technique which allows addition of exogenously supplied radiolabeled sugar nucleotides to serve as direct glycosyl donors, oligosaccharide biosynthesis was examined in fibroblasts obtained from normal and cystic fibrosis (CF) subjects. Incubation of logarithmically growing cells with either radiolabeled leucine or xylose has indicated that there was a difference in the synthetic rate between the cell types. Protein synthesis in normal cells made permeable with 50 m?g/ml lysolecithin (LL) was demonstrated to be absent, and could not be induced to take place by adding exogenous components, including energy sources and amino acids, normally required for protein synthesis. Thus radiolabeled sugars were being added to peptide acceptors which were already present at the time of LL addition. Both permeable and intact fibroblasts were exposed to labeled UDP-xylose, UDP-galactose, and UDP-glucuronic acid, all donors of mucopolysaccharide precursors. The uptake of xylose into protein was the same for both normal and CF cells, but permeable CF fibroblasts incorporated statistically greater amounts of sugar from UDP-galactose and UDP-glucuronic acid. Intact CF cells were also labeled using these two sugar nucleotides. Trypan blue exclusion indicated CF and normal fibroblasts were equally intact. This and the fact that preincubation of CF cells with the appropriate cold sugar nucleotide eliminated the differences in incorporation between the normal and CF cells suggested that CF fibroblasts had more cell surface acceptor than the normal cells.  相似文献   

7.
The studies presented here confirm earlier reports that an actin-like protein is abundant in brain. However, when the traditional procedures for isolating muscle actin are applied to brain, many different proteins are extracted. Tubulin, a major protein in brain with properties similar to actin, is the major constituent. A method is described for isolating the “brain actin” to a purity of 90–95%. The isolation method begins with an extraction of bovine brain in low ionic strength buffer with ATP and sucrose. The extract is treated with NH4SO4, MgCl, and KCl and incubated at 37°C. A precipitate is formed which contains primarily tubulin and brain actin. Resolubilization of the brain actin is achieved with a low ionic strength buffer solution with sucrose and ATP. Further purification is accomplished by a cycle of polymerization—depolymerization. This “brain actin” shares with muscle actin the following properties: (1) Similar molecular weight and molecular charge as determined by SDS polyacrylamide gel and ordinary disc electrophoresis; (2) Polymerization to a filamentous form under the same conditions; (3) Contains 3-methylhistidine; (4) Vinblastine sulfate will induce filament formation.  相似文献   

8.
Muscle actin has been found to polymerize reversibly upon addition of low concentrations of polyamines. This polymerization, studied by centrifugation, has shown a linear relationship between the actin polymerization yield and the chain length of the polyamine. Among the biological polyamines tested, spermidine and spermine are the most efficient. The polymerization of actin can also be induced by the corresponding mono or diguanidine derivatives of these polyamines but monoamines or amino acids are inactive at the same concentration. The transformation of actin from a globular to a fibrous from upon addition of spermidine is also demonstrated by the changes in the near-ultraviolet circular dichoroic spectrum of this protein. Moreover, the polyamine-induced F -actin exhibits the same properties as the salt-induced F -actin: it strongly activates the Mg2+ -ATPase of myosin, its specific viscosity is enhanced to the same extent and electron micrographs show homogeneous thin filaments.  相似文献   

9.
10.
The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

Introduction

Mechanical amplification is something we experience every day, in the form of gears, pulleys, and levers. While climbing a hill on a bicycle, for instance, shifting gears increases the force on the wheels while limiting the pressure required on the pedals. However, energy has to be conserved, and because mechanical work is defined as force × displacement, an increase in force can only be obtained at the expense of displacement. Thus, although shifting gears allows one to develop the additional force needed to go uphill, speed is reduced as each pedal stroke produces a smaller turn of the wheels. Cells have similarly developed microscopic force amplification strategies during evolution. Here, we discuss some amplification schemes for one of the major force generators in the cell—actin polymerization.Actin plays a ubiquitous role in cell motility and morphogenesis, spanning many scales of space and time. In fission yeast, for example, a miniature actin machinery only ∼100 nm across can induce the invagination of an endocytic vesicle in just a few seconds (Picco et al., 2015). However, to sever the entire yeast cell, a cytokinetic ring forms with an initial perimeter of ∼10 µm and requires ∼30 min to drive division (Proctor et al., 2012). These assemblies differ dramatically in both size and duration. In other species, considerably larger actin assemblies exist that reach the scale of centimeters, such as in muscle cells. Clearly, actin and its associated factors need to be specifically organized to achieve these different functions (Fig. 1). From a functional point of view, a key problem is to understand how the global architecture of an actin network allows forces that are produced at the molecular scale to be productive for the cell. In this respect, we can distinguish two sorts of components. Active components generate forces from chemical sources of energy and include molecular motors, as well as actin itself, which can push by polymerizing (Kovar and Pollard, 2004) and possibly pull while depolymerizing. Passive components, such as actin cross-linkers, are essential but can only transmit forces generated by other elements.Open in a separate windowFigure 1.Different actin networks. Networks of actin filaments are essential for many biological processes at the cellular level, and the organization of the filaments in space must be adapted to the task. Here, polymerization force (orange) of actin filaments (red) occurs near the plasma membrane (blue). Linear filopodia bundles with fascin (black) can produce high speeds, but represent a weak configuration for force generation. Lamellipodia are thin cellular extensions in which filaments are nearly parallel to the substrate on which the cell is crawling. The 2D branched network, created by Arp2/3 actin-nucleating complexes (black), can produce higher forces at the expense of displacement. During endocytosis in yeast, actin forms a 3D network at the site of the invagination that appears roughly spherical, but the organization of actin filaments in space is not known. The coat structure (yellow) enables actin to pull the membrane inward and actin polymerizes near the base of the structure, where Arp2/3 nucleators are shown in black (Picco et al., 2015). Endocytosis requires strong force amplification to pull the invagination against the turgor pressure.The forces developed by an actin meshwork are determined by the organization of its components. Ultimately, these forces must be sufficient to drive biological processes, and thus their scale depends on the physical characteristics of the cell. For example, in the case of endocytosis in yeast, the turgor pressure pushing the surface of the invagination outward reaches ∼1,000 pN, which the actin machinery must overcome (Basu et al., 2014). During cytokinesis, the actomyosin ring also works against the turgor pressure, which produces high forces on the furrow (Proctor et al., 2012). For both cases, these forces have been calculated from measured cellular parameters, particularly the turgor pressure and the dimensions over which the membrane is deformed. Hence, for these processes at least, the two ends of the problem are known: the forces produced by the molecular components make up the input and the force required for the cellular process to occur represents the output. Yet the force balance within the system must be considered to understand how the actin machinery harvests the input to produce this output.In this comment, we focus on the transmission of forces produced by the polymerization of actin, setting aside turnover and the contribution of molecular motors. We discuss specifically how the arrangement of the filaments in the system regulates the amount of productive force. In many ways, the actin machinery behaves analogously to a cyclist: though its power is limited, it can “shift gears” to favor either more displacement (high gears) or more force (low gears).

The force generated by actin polymerization

Actin polymerization can produce force. Indeed if an actin monomer in solution binds the barbed end of a filament, there is a change of free energy (ΔGp) and polymerization will occur if ΔGp < 0 (Fig. 2 A). This reaction depends on the concentration (C) of monomeric actin and will take place only above a critical concentration (C* of ∼0.14 µM; Pollard, 1986). It is associated with ΔGp = −kBT ln(C/C*), where kB is the Boltzmann constant and T is the absolute temperature. If actin is polymerizing against a load and producing work (W), the change in free energy is ΔGp + W. In this case, polymerization will occur spontaneously if the change is negative, i.e., ΔGp + W < 0. Consider an actin filament pushing against a force (f) applied parallel to the filament axis (Fig. 2 B). Because the addition of one actin monomer produces a displacement (δ = 2.75 nm; Holmes et al., 1990), the mechanical work is W = f × δ. Forces that are antagonistic to elongation can impede actin assembly (Peskin et al., 1993). The critical force under which the filament would cease to elongate is called the polymerization force (fa). Using a physiological concentration (C of ∼40 µM; Wu and Pollard, 2005), the polymerization force is thermodynamically limited to kBT ln(C/C*)/δ = ∼9 pN (Hill, 1981). Within such limits, the force developed by polymerization will depend on the conditions of assembly. Direct measurements of the polymerization force using single-molecule techniques are scarce. A first study used optical traps on bare filaments, giving a force of ∼1 pN (Footer et al., 2007). By monitoring the buckling of filaments capped with formins, a second study found the force to be ∼1.3 pN (Kovar and Pollard, 2004). In both cases, the concentration of actin was an order of magnitude lower than in vivo, and the measured forces were in fact close to the theoretical maximum under the experimental conditions. Here, we will thus consider that fa is within 1 and 9 pN. We further assume that an actin filament is able to elongate as long as the parallel component of the antagonistic force at its barbed end remains lower than fa, irrespective of the perpendicular components (Fig. 2 C). We discuss various examples of force amplification in which the network develops forces that exceed fa per filament, without breaking the thermodynamic requirement for actin polymerization (ΔGp + W < 0).Open in a separate windowFigure 2.Polymerization mechanics. (A) During polymerization, the addition of one actin monomer (orange) corresponds to an elongation (δ) at the barbed end of an actin filament (red) and is associated with a change of free energy (ΔGp = −kb T ln(C/C*)). (B) The work required to push a load over a distance (h) with a force (f) is f × h, and thus assembly remains favorable as long as ΔGp + f × h < 0. In the case where polymerization occurs straight against a load (h = δ), the maximal force (fa) is fa = kb T ln(C/C*)/δ (Hill, 1981). (C) If the filament encounters the load with an angle (θ), then h = δ sinθ and the maximal force is consequently increased: fθ = fa/sinθ. (D) In the branched network of a lamellipod, actin grows against the leading membrane at an angle (θ = ∼54°). In the absence of friction, the force between the polymerizing tip (orange) of the actin and the membrane (blue) is perpendicular to the membrane. It can then reach a maximum magnitude of fa/sinθ. The sum of the forces produced by the two filaments is then ∼2.5 fa. (E) Higher forces arise by polymerizing with shallow angles. The device illustrated here is composed of a growing actin filament with a “leg” on its side. By elongating, the filament will induce rotation around the pivot point, where the leg is contacting the membrane. High forces can be exerted on a load supported at the branch point, as a result of the amplification achieved by the lever arm and contact angle. (F) The highest forces are generated if a filament polymerizes parallel to the surface. In the illustrated configuration, elongation of the filament will cause a load (green dome) to separate from the membrane. The maximal force is calculated as in E, except that anchoring has to be assumed at the pivot point to balance forces horizontally. The device can sustain high forces applied on the top of the dome because the upward movement is small compared with the elongation of the filament.

Table 1.

Physical characteristics of actin
CharacteristicMeasurementReference
Length increment per actin monomerδ = 2.75 nmHolmes et al., 1990
Diameter of filamentous actinε = 7–9 nmHolmes et al., 1990
Polymerization force of actinfa between 1 and 9 pNSee Fig. 2
Concentration of actin monomersC = ∼15–500 µM in nonmuscle cells;
C = ∼30–60 µM in fission yeast
Wu and Pollard, 2005; Footer et al., 2007
Open in a separate window

The high gear: actin pushing forward

A clear example of pushing by actin is found in filopodia (Fig. 1), which are thin tubular actin-rich cytoplasmic projections extending forward and orthogonally to the leading edge of motile cells. Extending a filopod should require a force (F) >10 pN (Mogilner and Rubinstein, 2005) to overcome membrane tension and rigidity. In a filopod, actin is organized as a bundle of n parallel filaments. If the load is distributed over all barbed ends, then each end sustains a fraction of the total force (F/n). Extension will then be possible only if the polymerization force is larger than the fraction of force experienced by each filament (F/n < fa) and thus requires sufficient barbed ends to distribute the force. Therefore, ten filaments are theoretically sufficient to extend a filopod. This quasi 1D organization maximizes growth speed for a given amount of added monomers; i.e., it is the highest gear of the actin machinery. Assembling more filaments can increase the force, but because the molecular forces are always equal to the productive force, there is no mechanical amplification.

Intermediate gears: actin pushing with an angle

In lamellipodia, actin filaments form a branched meshwork rather than a bundle. If each filament can produce the same amount of force parallel to its axis, the push on the membrane can be higher as a result of the contact angle (usually θ = ∼54°) at which actin filaments encounter the membrane (Fig. 2 D). A force fa parallel to the axis of a filament corresponds to a proportional force perpendicular to the membrane (fa/sinθ). The total pushing force (F) on the membrane, then, is the sum of such perpendicular forces applied by n filaments (F = n × fa/sinθ). Because sin(54°) < 1, the productive force is increased. This occurs at the detriment of displacement achieved by each actin monomer, which is also proportional to the contact angle (δ × sinθ). Importantly, the contact angle is not solely determined by the branching angle imposed by Arp2/3, the primary nucleating complex for branched actin filaments, because the branched network can adopt different orientations with respect to the leading edge (Weichsel and Schwarz, 2010). Thus, this quasi-2D system works like a gearbox, where the coefficient (sinθ) can vary, allowing a lamellipod to generate nanonewton scale forces (Prass et al., 2006).This idea can be extended to other architectures with various amplification factors. Consider, for example, the configuration illustrated in Fig. 2 E, in which two asymmetrically branched filaments engage the membrane, but only the long branch polymerizes whereas the short branch provides support by transmitting force between the membrane and the filament network. Upon polymerization, the whole construction rotates around a pivot point at the base of the supporting branch, and the contact angle of the polymerizing filament becomes shallower in comparison to the symmetrically polymerizing configuration. Strikingly, this configuration can develop more force than the symmetric case, as an additional amplification (x + y)/x is associated with the lever arms (compare Fig. 2, D and E). This illustrates that the network force is not solely proportional to the number of polymerizing barbed ends. The geometry of the system, particularly the angle at which the filaments contact the membrane, and the lever arms can further affect and amplify the total forces generated by the network.

The low gear: actin like a wedge

To interpret in vitro experiments in which actin polymerizes around beads (Achard et al., 2010; Démoulin et al., 2014), it has been suggested that resistance from a load could cause actin to polymerize parallel to the surface. In this simple configuration, a filament is confined between a base and a load, which is pushed upward as the filament grows (Fig. 2 F). The upward displacement of the load is determined by the thickness of the actin filament (ε) and by the lever arms x and y, relative to the pivot point. The result is nearly identical to the configuration in Fig. 2 E, but the new device offers better performance; whereas the long filament in Fig. 2 E can bend all the more as it elongates, this configuration works well even with flexible filaments. In the geometry suggested by Fig. 2 F, the load is lifted by the filament thickness once the filament has polymerized over the entire base. In a more realistic 3D network, the relationship between polymerization and displacement will not be as simple, because the arrangement of filaments in 3D networks is intricate. Nevertheless, the mechanical concepts remain valid and, in particular, polymerization parallel to a surface could lead to strong orthogonal forces. In yeast endocytosis, actin polymerizes at the bottom of the network in a configuration resembling the wedge (Picco et al., 2015). This may perhaps resolve the apparent mismatch between the number of polymerizing filaments and the force resulting from pressure (Basu et al., 2014). The force generated by the network depends critically on the network architecture, as this determines the constraints under which filaments grow (Carlsson and Bayly, 2014). In general, the force that can be exerted on a load will also depend on the mechanics of the entire structure. Network elasticity allows the polymerization force to be stored as stress, whereas stress relaxation by disassembly and turnover will decrease the force the network can exert (Zhu and Mogilner, 2012).

Conclusion

In 1D structures, such as filopodia, force balance forbids mechanical amplification; however, in 2D structures, the contact angle between the barbed end and the membrane provides a mechanism for tradeoff between force and displacement, and thus allows for force amplification. Configurations in which filaments grow parallel to the membrane, and thus act like wedges, produce the highest forces. Of course, energy conservation dictates that displacement is reduced as force is increased, such that there is a “cost” for force amplification.A key parameter of our considerations is the force that a polymerizing actin filament can support (fa). Energetic consideration provides an upper bound of ∼9 pN, but so far direct measurements have yielded lower values, around 1 pN. Thermal fluctuations provide a scale to which this can be compared. At a given temperature (T), the characteristic energy associated with thermal fluctuations is kBT, where kB is the Boltzmann constant; at room temperature, the associated force (kBT/δ) corresponds to 1.5 pN. Hence, if fa is truly ∼1 pN, it would imply that actin polymerization is hardly more efficient than thermal fluctuations. It is to be hoped that future experimental studies, possibly closer to in vivo conditions, will reveal higher forces, as it would be truly astonishing if actin used only 10% of the available energy.In conclusion, the architecture of a network determines the productive force, often in a nonintuitive manner. Hence, once a system has been well characterized experimentally, mechanical theory should be used to balance the forces within the network. When this cannot be done, energetic considerations, in which the mechanical work of the forces are summed and compared, are informative. A thorough analysis of force transduction in the system makes it possible to predict the most efficient architecture for performing a given task (Ward et al., 2015), which is of outstanding value when comparing different modus operandi across species.  相似文献   

11.
Factors that are involved in actin polymerization, such as the Arp2/3 complex, have been found to be packaged into discrete, motile, actin-rich foci. Here we investigate the mechanism of actin-patch motility in S. pombe using a fusion of green fluorescent protein (GFP) to a coronin homologue, Crn1p. Actin patches are associated with cables and move with rates of 0.32 microm s(-1) primarily in an undirected manner at cell tips and also in a directed manner along actin cables, often away from cell tips. Patches move more slowly or stop when actin polymerization is attenuated by Latrunculin A or in arp3 and cdc3 (profilin) mutants. In a cdc8 (tropomyosin) mutant, actin cables are absent, and patches move with similar speed but in a non-directed manner. Patches are sites of Arp3-dependent F-actin polymerization in vitro. Rapid F-actin turnover rates in vivo indicate that patches and cables are maintained continuously by actin polymerization. Our studies give rise to a model in which actin patches are centres for actin polymerization that drive their own movement on actin cables using Arp2/3-based actin polymerization.  相似文献   

12.
Sequestered actin in chick embryo fibroblasts   总被引:1,自引:0,他引:1  
Chick embryo fibroblasts contain about 75-100 M unpolymerized actin and at least four proteins which can bind actin monomers, actin depolymerizing factor (ADF), gelsolin, profilin, and thymosin 4 (T4). Fibroblast extracts are analyzed by non-denaturing polyacrylamide gel electrophoresis and immunoblotting where most of the G-actin is detected as a complex with T4. When fibroblast extracts are fractionated by gel filtration and the fractions are analyzed by PAGE and HPLC, most of the G-actin elutes in a peak that also contains T4 at an overall molar ratio of 1.9:1 relative to actin. Gelsolin, profilin, and ADF are also detectable in the gel filtration eluate and at least partly coelute with actin, and account for only a minor fraction of the soluble actin pool. These observations indicate that under the growth conditions studied, T4 is the major actin-sequestering protein in fibroblasts.  相似文献   

13.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

14.
Substoichiometric concentrations of cytochalasin D inhibited the rate of polymerization of actin in 0.5 mM MgCl2, increased its critical concentration and lowered its steady state viscosity. Stoichiometric concentrations of cytochalasin D in 0.5 mM MgCl2 and even substoichiometric concentrations of cytochalasin D in 30 mM KCl, however, accelerated the rate of actin polymerization, although still lowering the final steady state viscosity. Cytochalasin B, at all concentrations in 0.5 mM MgCl2 or in 30 mM KCl, accelerated the rate of polymerization and lowered the final steady state viscosity. In 0.5 mM MgCl2, cytochalasin D uncoupled the actin ATPase activity from actin polymerization, increasing the ATPase rate by at least 20 times while inhibiting polymerization. Cytochalasin B had a very much lower stimulating effect. Neither cytochalasin D nor B affected the actin ATPase activity in 30 mM KCl. The properties of cytochalasin E were intermediate between those of cytochalasin D and B. Cytochalasin D also stimulated the ATPase activity of monomeric actin in the absence of MgCl2 and KCl and, to a much greater extent, stimulated the ATPase activity of monomeric actin below its critical concentration in 0.5 mM MgCl2. Both above and below its critical concentration and in the presence and absence of cytochalasin D, the initial rate of actin ATPase activity, when little or no polymerization had occurred, was directly proportional to the actin concentration and, therefore, apparently was independent of actin-actin interactions. To rationalize all these data, a working model has been proposed in which the first step of actin polymerization is the conversion of monomeric actin-bound ATP, A . ATP, to monomeric actin-bound ADP and Pi, A* . ADP . Pi, which, like the preferred growing end of an actin filament, can bind cytochalasins.  相似文献   

15.
The actin of muscle and fibroblasts.   总被引:3,自引:3,他引:0       下载免费PDF全文
The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types.  相似文献   

16.
17.
The studies presented here confirm earlier reports that an actin-like protein is abundant in brain. However, when the traditional procedures for isolating muscle actin are applied to brain, many different proteins are extracted. Tubulin, a major protein in brain with properties similar to actin, is the major constituent. A method is described for isolating the "brain actin" to a purity of 90-95%. The isolation method begins with an extraction of bovine brain in low ionic strength buffer with ATP and sucrose. The extract is treated with NH4SO4, MgCl, and KCl and incubated at 37 degrees C. A precipitate is formed which contains primarily tubulin and brain actin. Resolubilization of the brain actin is achieved with a low ionic strength buffer solution with sucrose and ATP. Further purification is accomplished by a cycle of polymerization-depolymerization. This "brain actin" shares with muscle actin the following properties: (1) Similar molecular weight and molecular charge as determined by SDS polyacrylamide gel and ordinary disc electrophoresis; (2) Polymerization to a filamentous form under the same conditions; (3) Contains 3-methylhistidine; (4) Vinblastine sulfate will induce filament formation.  相似文献   

18.
J C Huijzer  M J Smerdon 《Biochemistry》1992,31(21):5077-5084
We have examined the incorporation of biotinyl-11-deoxyuridine triphosphate (BiodUTP) into excision repair patches of UV-irradiated confluent human fibroblasts. Cells were reversibly permeabilized to BiodUTP with lysolecithin, and biotin was detected in DNA on nylon filters using a streptavidin/alkaline phosphatase colorimetric assay. Following a UV dose of 12 J/m2, maximum incorporation of BioUTP occurred at a lysolecithin concentration (80-100 micrograms/mL) similar to that for incorporation of dTTP. Incorporation of BiodUTP into repair patches increased with UV dose up to 4 and 8 J/m2 in two normal human fibroblast strains, while no incorporation of BiodUTP was observed in xeroderma pigmentosum (group A) human fibroblasts. The repair-incorporated biotin was not removed from the DNA over a 48-h period, and only slowly disappeared after longer times (approximately 30% in 72 h), while little of the biotin remained in cells induced to divide. Furthermore, the stability of the biotin in repaired DNA was unaffected by a second dose of UV radiation several hours after the biotin-labeling period to induce a "second round" of excision repair. Exonuclease III digestion and gap-filling with DNA polymerase I indicate that the majority of biotin-labeled repair patches (approximately 80%) are rapidly ligated in confluent human cells. However, the remaining patches were not ligated after a 24-h chase period, in contrast to dTTP-labeled repair patches. The BiodUMP repair label in both chromatin and DNA is preferentially digested by staphylococcal nuclease, preventing the use of this enzyme for nucleosome mapping in these regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The SH3-SH3-SH3-SH2 adapter Nck represents a two-gene family that includes Nckalpha (Nck) and Nckbeta (Grb4/Nck2), and it links receptor tyrosine kinases to intracellular signaling networks. The function of these mammalian Nck genes has not been established. We report here a specific role for Nckbeta in platelet-derived growth factor (PDGF)-induced actin polymerization in NIH 3T3 cells. Overexpression of Nckbeta but not Nckalpha blocks PDGF-stimulated membrane ruffling and formation of lamellipoda. Mutation in either the SH2 or the middle SH3 domain of Nckbeta abolishes its interfering effect. Nckbeta binds at Tyr-1009 in human PDGF receptor beta (PDGFR-beta) which is different from Nckalpha's binding site, Tyr-751, and does not compete with phosphatidylinositol-3 kinase for binding to PDGFR. Microinjection of an anti-Nckbeta but not an anti-Nckalpha antibody inhibits PDGF-stimulated actin polymerization. Constitutively membrane-bound Nckbeta but not Nckalpha blocks Rac1-L62-induced membrane ruffling and formation of lamellipodia, suggesting that Nckbeta acts in parallel to or downstream of Rac1. This is the first report of Nckbeta's role in receptor tyrosine kinase signaling to the actin cytoskeleton.  相似文献   

20.
How WASP regulates actin polymerization   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号