首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luo H  Ye F  Sun T  Yue L  Peng S  Chen J  Li G  Du Y  Xie Y  Yang Y  Shen J  Wang Y  Shen X  Jiang H 《Biophysical chemistry》2004,112(1):15-25
The major biochemical and thermodynamic features of nucelocapsid protein of SARS coronavirus (SARS_NP) were characterized by use of non-denatured gel electrophoresis, size-exclusion chromatographic and surface plasmon resonance (SPR) techniques. The results showed that SARS_NP existed in vitro as oligomer, more probably dimer, as the basic functional unit. This protein shows its maximum conformational stability near pH 9.0, and it seems that its oligomer dissociation and protein unfolding occur simultaneously. Thermal-induced unfolding for SARS_NP was totally irreversible. Both the thermal and chemical denaturant-induced denaturation analyses showed that oligomeric SARS_NP unfolds and refolds through a two-state model, and the electrostatic interactions among the charge groups of SARS_NP made a significant contribution to its conformational stability.  相似文献   

2.
The conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13 isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme (the 1ADD structure was used) within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of the ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1-deazaadenosine (1ADD) known from the X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of the bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

3.
Yap KL  Ames JB  Swindells MB  Ikura M 《Proteins》1999,37(3):499-507
The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF-hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF-hand proteins that this "closed-to-open" conformational transition is not the sole model for EF-hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF-hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF-hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF-hand proteins and its correlation with target recognition.  相似文献   

4.
p53 protein conformation is an important determinant of its localization and activity. Changes in p53 conformation can be monitored by reactivity with wild-type conformation-specific (pAb-1620) or mutant conformation-specific (pAb-240) p53 antibodies. Wild-type p53 accumulated in a mutant (pAb-240 reactive) form when its proteasome-dependent degradation was blocked during recovery from stress treatment and in cells co-expressing p53 and MDM2. This suggests that conformational change precedes wild-type p53 degradation by the proteasome. MDM2 binding to the p53 N terminus could induce a conformational change in wild-type p53. Interestingly, this conformational change was opposed by heat-shock protein 90 and did not require the MDM2 RING-finger domain and p53 ubiquitination. Finally, ubiquitinated p53 accumulated in a pAb-240 reactive form when p53 degradation was blocked by proteasome inhibition, and a p53-ubiquitin fusion protein displayed a mutant-only conformation in MDM2-null cells. These results support a model in which MDM2 binding induces a conformational change that is opposed by heat-shock protein 90 and precedes p53 ubiquitination. The covalent attachment of ubiquitin may "lock" p53 in a mutant conformation in the absence of MDM2-binding and prior to its degradation by the proteasome.  相似文献   

5.
It is widely accepted that bacteriorhodopsin undergoes global conformational changes during its photocycle. In this review, the structural properties of the M and N intermediates are described in detail. Based on the clarified global conformational change, we propose a model for the molecular mechanism of the proton pump. The global structural change is suggested to be a key component in establishing vectorial proton transport.  相似文献   

6.
D Suh  R D Sheardy  J B Chaires 《Biochemistry》1991,30(36):8722-8726
  相似文献   

7.
Theoretical conformational analysis of a series of alpha 1-adrenoceptor activators and inhibitors including 6-fluoronoradrenaline, methoxamine, phenoxydenzamine, piperoxane, and WB-4101 has been carried out by classical semi-empirical method. The conformational energy minimization was performed in the space of the majority of torsional and bond angles. The selection of productive conformations was made according to the following criteria: 1) low conformational energy; 2) similarity of the nitrogen atoms and phenyl rings spatial disposition in all ligands; 3) accessibility for intermolecular interactions of the functional moieties in all ligands. The productive conformation of alpha 1-adrenoceptor endogenous activator, noradrenaline, has the Ph-C-C-N fragment in the perpendicular (-)-gaushe conformation, and ethanolamine side chain beta-hydroxyl in trans arrangement relative to the meta hydroxyl of the catechol ring. A topographic model for the receptor was suggested, its components being the arylophilic, nucleophilic, hydrophobic, and proton acceptor groups, along with the binding region for catechol hydroxyls, situated against the most accessible sides of the functional moieties of the ligands. Structure-activity relationships for a series of alpha 1-adrenoceptor ligands are discussed in the light of the proposed model. Both common and characteristic features of the alpha 1-adrenoceptor model are considered in comparison with the earlier suggested beta 2-adrenoceptor model.  相似文献   

8.
Conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13-isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme [the structure of ADA complex with 1-deazaadenosine (1ADD) was used] within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1ADD known from X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

9.
The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.  相似文献   

10.
The albA gene of Klebsiella oxytoca encodes a protein of 221 amino acids that binds the albicidin phytotoxin with a high affinity (dissociation constant = 6.4 x 10(-8) M). For this study, circular dichroism (CD) spectrometry and an alanine scanning mutagenesis approach were used in combination to investigate the molecular and conformational mechanisms of this high-affinity protein-ligand interaction. CD analysis revealed that AlbA contains a high-affinity binding site, and binding of the albicidin ligand to AlbA in a low-ionic-strength environment induced significant conformational changes. The ligand-dependent conformational changes of AlbA were specific and rapid and reached a stable plateau within seconds after the addition of the antibiotic. However, such conformational changes were not detected when AlbA and albicidin were mixed in the high-ionic-strength buffer that is required for maximal binding activity. Based on the conceptual model of protein-ligand interaction, we propose that a threshold ion strength allows AlbA to complete its conformational rearrangement and resume its original stable structure for accommodation of the bound albicidin. Mutagenesis analysis showed that the replacement of Lys106, Trp110, Tyr113, Leu114, Tyr126, Pro134, and Trp162 with alanine did not change the overall conformational structure of AlbA but decreased the albicidin binding activity about 30 to 60%. We conclude that these residues, together with the previously identified essential residue His125, constitute a high-affinity binding pocket for the ligand albicidin. The results also suggest that hydrophobic and electrostatic potentials of these key amino acid residues may play important roles in the AlbA-albicidin interaction.  相似文献   

11.
The concept of allostery has evolved in the past century. In this Editorial, we briefly overview the history of allostery, from the pre-allostery nomenclature era starting with the Bohr effect (1904) to the birth of allostery by Monod and Jacob (1961). We describe the evolution of the allostery concept, from a conformational change in a two-state model (1965, 1966) to dynamic allostery in the ensemble model (1999); from multi-subunit (1965) proteins to all proteins (2004). We highlight the current available methods to study allostery and their applications in studies of conformational mechanisms, disease, and allosteric drug discovery. We outline the challenges and future directions that we foresee. Altogether, this Editorial narrates the history of this fundamental concept in the life sciences, its significance, methodologies to detect and predict it, and its application in a broad range of living systems.  相似文献   

12.
Dehydration of proteins results in significant, measurable conformational changes as observed using Fourier-transform infrared spectroscopy and resolution-enhancement techniques. For several proteins these conformational changes are at least partially irreversible, since, upon rehydration, denaturation and aggregation are observed. The presence of certain stabilizers inhibited these dehydration-induced transitions; the native structure was preserved in the dried state and upon reconstitution. Conformational transitions were also observed in a model polypeptide, poly-L-lysine, after lyophilization and were inhibited with the addition of stabilizing cosolutes. The ability of a particular additive to preserve the aqueous structure of dehydrated proteins and poly-L-lysine upon dehydration correlates directly with its ability to preserve the activity of lactate dehydrogenase, a labile enzyme, during drying.  相似文献   

13.
Choe S  Sun SX 《Biophysical journal》2007,92(4):1204-1214
Using a coarse-grained elastic model, we examine the bending properties of anti-parallel beta-sheets comprised of uniform amino-acid residues in vacuum as well as in explicit solvent. By comparing the conformational probability of the beta-sheet from molecular dynamics simulations with the same quantities obtained from the coarse-grained model, we compute the elastic bending constant, kappa. Equilibrium fluctuations of the beta-sheet and its response to external forces are well reproduced by a model with a uniform isotropic bending constant. An anisotropic bending model is also investigated, although the computed anisotropy is relatively weak and most of the observed properties are well described by an isotropic model. The presence of explicit solvent also lowers the bending constant. The sequence dependence of our result and its implications in protein conformational dynamics are discussed.  相似文献   

14.
Grucza RA  Fütterer K  Chan AC  Waksman G 《Biochemistry》1999,38(16):5024-5033
The cytosolic tyrosine kinase Syk is recruited to immune cell receptors via interactions of its tandem-SH2 domain with tyrosine-phosphorylated sequences called immune receptor tyrosine activation motifs (ITAMs). We have characterized the binding of the tandem-SH2 domain of Syk (Syk-tSH2) to a dually phosphorylated peptide derived from the ITAM of the T cell receptor CD3-epsilon subunit. The CD3-epsilon peptide binds with an affinity of 18-81 nM at 150 mM NaCl over the 4.5-30 degrees C temperature range that was studied. The enthalpy of binding, DeltaH degrees obs, shows an unusual nonlinear dependence on temperature, suggesting the possibility of a temperature-dependent conformational equilibrium coupled to binding. This hypothesis was tested and confirmed by examining the temperature dependence of (1) the on-rate constant for binding and (2) the fluorescence of Syk-tSH2 and its CD3-epsilon peptide complex. The DeltaH degrees obs, Kobs, fluorescence, and kinetic data are all well described by a model incorporating the hypothesized conformational equilibrium. Circular dichroism spectra at various temperatures indicate that the conformational change is not due to a partial unfolding of the protein. We suggest that the conformational equilibrium enables Syk-tSH2 to exhibit flexibility in its binding modality, which may be necessitated by Syk's involvement in a wide variety of signal tranduction pathways.  相似文献   

15.
Protein modeling could be done on various levels of structural details, from simplified lattice or continuous representations, through high resolution reduced models, employing the united atom representation, to all-atom models of the molecular mechanics. Here I describe a new high resolution reduced model, its force field and applications in the structural proteomics. The model uses a lattice representation with 800 possible orientations of the virtual alpha carbon-alpha carbon bonds. The sampling scheme of the conformational space employs the Replica Exchange Monte Carlo method. Knowledge-based potentials of the force field include: generic protein-like conformational biases, statistical potentials for the short-range conformational propensities, a model of the main chain hydrogen bonds and context-dependent statistical potentials describing the side group interactions. The model is more accurate than the previously designed lattice models and in many applications it is complementary and competitive in respect to the all-atom techniques. The test applications include: the ab initio structure prediction, multitemplate comparative modeling and structure prediction based on sparse experimental data. Especially, the new approach to comparative modeling could be a valuable tool of the structural proteomics. It is shown that the new approach goes beyond the range of applicability of the traditional methods of the protein comparative modeling.  相似文献   

16.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

17.
G M Keserü  D K Menyhárd 《Biochemistry》1999,38(20):6614-6622
Monte Carlo protein simulations with continuum solvation were used to explore the conformational mobility of NO within the active site of metmyoglobin. To the best of our knowledge this is the first application of a continuum solvation model for exploring protein binding sites. The usefulness of the Monte Carlo conformational analysis was demonstrated in comparative molecular dynamics simulations. Analysis of conformer populations revealed that Monte Carlo conformational analysis is more effective in mapping the relevant region of the potential surface. Distribution of low-energy conformers obtained for the metmyoglobin-NO complex was found to depend on the orientation of proximal His93. Different charge distributions corresponding to the two experimentally verified possible torsions of this proximal residue result in strong binding of NO or its release to a nearby hydrophobic trap. Conformer populations obtained by Monte Carlo conformational analysis were grouped into three main families: one, with the NO directly bound to the iron, appears when the CA-CB-CG-CD2 torsion of His93 is at its ligand binding value (-113 degrees); and two conformers exist where NO is trapped in a nearby hydrophobic pocket, the same cavity that was determined to be the geminate trap of CO in ferrous Mb as a result of the torsional flip of His93 to its ligand releasing state (-125 degrees). Based on this analysis, we suggest that the electrostatic rearrangement coupled to the conformational fluctuation of the proximal His leads to the geminate trapping of the ligand. Conformational rearrangement of the proximal side would provide the possibility of rebinding of the ligand to Fe.  相似文献   

18.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

19.
Interaction of delta-endotoxin and its proteolytic fragments with phospholipid vesicles was studied using electron microscopy, scanning microcalorimetry, and limited proteolysis. It was shown that native protein destroys liposomes. The removal of 4 N-terminal alpha-helices and the extreme 56 C-terminal amino acid residues did not affect this ability. The results obtained by limited proteolysis of delta-endotoxin bound to lipid vesicles show essential conformational changes in three or four N-terminal helices and in the C-terminal region. The calorimetric method used in this study provides a unique possibility for the validation of existing models of protein binding and for a more accurate determination of the regions where conformational changes take place. It was found that the binding of the protein to model liposomes does not alter its structure in the regions starting with the fourth alpha-helix of domain I. This can be concluded from the fact that the activation energy of denaturation of the protein remains unchanged upon its binding to the phospholipid membranes. A new structural model has been proposed which agrees with the data obtained.  相似文献   

20.
A synaptic complex of Tn5 transposase with an extended outside end DNA duplex was prepared and crystallized, and its crystal structure was determined in an effort to reveal the role of metal ions in catalysis. Two Mn2+ ions bound to the active site when a single nucleotide of donor DNA was added to the 3' end of the transferred strand. Marked conformational changes were observed in the DNA bases closest to the active site. The position of the metal ions and the conformational changes of the DNA provide insight into the mechanism of hairpin formation and cleavage, and is consistent with a two-metal model for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号