首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic flux analysis using (13)C-labeled substrates is a well-developed method for investigating cellular behavior in steady-state culture condition. To extend its application, in particular to typical industrial conditions, such as batch and fed-batch cultivations, a novel method of (13)C metabolic flux analysis is proposed. An isotopomer balancing model was developed to elucidate flux distributions in the central metabolism and all amino acids synthetic pathways. A lysine-producing strain of Escherichia coli was cultivated by fed-batch mode in a growth medium containing yeast extract. Mass distribution data was derived from both intracellular free amino acids and proteinogenic amino acids measured by LC-MS/MS, and a correction parameter for the protein turnover effect on the mass distributions of intracellular amino acids was introduced. Metabolic flux distributions were determined in both exponential and stationary phases. Using this new approach, a culture phase-dependent metabolic shift was detected in the fed-batch culture. The approach presented here has great potential for investigating cellular behavior in industrial processes, independent of cultivation modes, metabolic phase and growth medium.  相似文献   

2.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

3.
A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate.  相似文献   

4.
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose‐limited fed‐batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to 13C flux analysis was developed that is based on recording 13C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi‐steady states and estimation of isotopic steady state 13C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30–60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase‐like mechanism to close the balance of reducing equivalents. Biotechnol. Bioeng. 2010. 105: 795–804. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
When Lactococcus lactis was grown in various complex or synthetic media, the fermentation of glucose remained homolactic whatever the medium used, with a global carbon balance of about 87%. Moreover, the nitrogen balance was not equilibrated, indicating that some amino acids led to the production of unknown nitrogen-containing carbon compounds while part of the glucose might contribute to anabolic pathways. In minimal medium containing six amino acids, a high concentration of serine was deaminated to pyruvate. This did not occur in more complete media, suggesting the presence of a regulation of this phenomenon by an amino acid. Ammonia produced during serine consumption was partly reconsumed after serine exhaustion. The values for biomass yield and biomass yield relative to ATP (Y(infATP)), the maximal growth rate, the specific rate of glucose consumption, and the corresponding rate of ATP synthesis all increased with the complexity of the medium, amino acid composition having the most pronounced effect. The Y(infATP) values were shown to range from 6.6 to 17.6 g of biomass(middot)mol of ATP(sup-1) on minimal and complex media.  相似文献   

6.
Genome-scale flux analysis of Escherichia coli DH5alpha growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genome-scale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed us to explain the observed rapid consumption of serine: excessively consumed external serine from the complex medium was mainly converted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites.  相似文献   

7.
The kinetics of Bacillus thuringiensis growth and its assimilation of nutrient substances were studied under the conditions of batch cultivation in a complex medium containing yeast extract and in a chemically defined medium with amino acids. The growth of B. thuringiensis can be divided into five phases: exponential growth; decelerated growth; stationary phase when protein crystals are formed; stationary phase when spores are formed; lysis of sporangia releasing spores. The first phase may in turn be subdivided into three stages according to changes in the specific growth rate and substrate assimilation: a high specific growth rate and no glucose assimilation; an abrupt drop in mu and the beginning of intensive glucose assimilation from the medium; a new rise in the specific growth rate. As follows from the results of studying the kinetics of B. thuringiensis growth in a chemically defined medium, the above changes in the exponential growth phase are due to the fact that the culture assimilates yeast extract components in the complex medium or amino acids in the chemically defined medium during this phase, and then starts to assimilate glucose and ammonium in the following phases of growth.  相似文献   

8.
The metabolic fluxes through the central carbon pathways in the bioprocess for serine alkaline protease (SAP) production by Bacillus licheniformis were calculated by the metabolic flux-based stoichiometric model based on the proposed metabolic network that contains 102 metabolites and 133 reaction fluxes using the time profiles of citrate, dry cell, organic acids, amino acids, and SAP as the constraints. The model was solved by minimizing the SAP accumulation rate in the cell. The effects of the oxygen-transfer rate (OTR) on the metabolic fluxes were investigated in a defined medium where citrate was used as the sole carbon source. The central pathways were active for the growth and the SAP synthesis in all the periods of the bioprocess at low (LOT), medium (MOT), and high (HOT) oxygen-transfer conditions. The flux partitioning in the TCA cycle at alpha-ketoglutarate towards glutamate group and at oxalacetate (OA) toward aspartic acid group amino acids were dependent on the OTR. The flux of the anaplerotic reaction that connects the TCA cycle either from malate or OA to the gluconeogenesis pathway via the main branch point pyruvate (Pyr) was also influenced by the OTR. With the decrease in the OTR, the intracellular flux values after glycerate 3-phosphate (PG3) in the gluconeogenesis pathway and the specific growth rate decreased. The total ATP-generation rate increased with the increase in OTR. The pathway towards the aspartic acid family amino acids which is important for sporulation that precedes the SAP synthesis were all active throughout the bioprocess. Metabolic flux analysis results at LOT, MOT, and HOT conditions encourage the design of an oxygen-transfer strategy in the bioreactor; moreover, asparagine synthetase or aspartate kinase could be the potential metabolic engineering sites due to the low value of the flux from the branch point aspartate toward asparagine.  相似文献   

9.
The growth and product formation of Saccharomyces kluyveri was characterized in aerobic batch cultivation on glucose. At these conditions it was found that ethyl acetate was a major overflow metabolite in S. kluyveri. During the exponential-growth phase on glucose ethyl acetate was produced at a constant specific rate of 0.12 g ethyl acetate per g dry weight per hour. The aerobic glucose metabolism in S. kluyveri was found to be less fermentative than in S. cerevisiae, as illustrated by the comparably low yield of ethanol on glucose (0.08 +/- 0.02 g/g), and high yield of biomass on glucose (0.29 +/- 0.01 g/g). The glucose metabolism of S. kluyveri was further characterized by the new and powerful techniques of metabolic network analysis. Flux distributions in the central carbon metabolism were estimated for respiro-fermentative growth in aerobic batch cultivation on glucose and respiratory growth in aerobic glucose-limited continuous cultivation. It was found that in S. kluyveri the flux into the pentose phosphate pathway was 18.8 mmole per 100 mmole glucose consumed during respiratory growth in aerobic glucose-limited continuous cultivation. Such a low flux into the pentose phosphate pathway cannot provide the cell with enough NADPH for biomass formation which is why the remaining NADPH will have to be provided by another pathway. During batch cultivation of S. kluyveri the tricarboxylic acid cycle was working as a cycle with a considerable flux, that is in sharp contrast to what has previously been observed in S. cerevisiae at the same growth conditions, where the tricarboxylic acid cycle operates as two branches. This indicates that the respiratory system was not significantly repressed in S. kluyveri during batch cultivation on glucose.  相似文献   

10.
Aims:  To determine the effects of carbohydrates on Bacillus cereus ATCC14579T anaerobic metabolism and enterotoxin production in amino acids rich medium.
Methods and Results:  Bacillus cereus anaerobic growth on different carbohydrates (glucose, fructose, sucrose or glucose–fructose mixture) was examined in synthetic mMOD medium under continuous cultures (μ = 0·2 h−1). Fermentation end-products, flux partitioning at each key branch points of the mixed acid pathway and consumption or production of amino acids were determined. On both fructose and sucrose, ATP production was favoured via acetate production from acetyl-CoA. In addition, amino acids present in the growth medium showed significant variations with high consumption of serine and net production of glutamate and alanine on some or all sugars. Enterotoxins Hbl and Nhe production was high during growth on fructose (or mixtures involving a fructose moiety).
Conclusions:  Fructose was identified as a key sugar influencing anaerobic metabolism and toxin production of B. cereus .
Significance and Impact of the Study:  The physiological differences associated with the fermentation of the various carbohydrates clearly modify toxinogenesis indicating that the risk of foodborne pathogens is to some extent dependent upon the prevailing nutritional environment.  相似文献   

11.
The synthesis of human superoxide dismutase (SOD) in batch cultures of a Saccharomyces cerevisiae strain using a glucose-limited minimal medium was studied through metabolic flux analysis. A stoichiometric model was built, which included 78 reactions, according to metabolic pathways operative in these strains during respirofermentative and oxidative metabolism. It allowed calculation of the distribution of metabolic fluxes during diauxic growth on glucose and ethanol. Fermentation profiles and metabolic fluxes were analyzed at different phases of diauxic growth for the recombinant strain (P+) and for its wild type (P-). The synthesis of SOD by the strain P+ resulted in a decrease in specific growth rate of 34 and 54% (growth on glucose and ethanol respectively) in comparison to the wild type. Both strains exhibited similar flux of glucose consumption and ethanol synthesis but important differences in carbon distribution with biomass/substrate yields and ATP production 50% higher in P-. A higher contribution of fermentative metabolism, with 64% of the energy produced at the phosphorylation level, was observed during SOD production. The flux of precursors to amino acids and nucleotides was higher in the recombinant strain, in agreement with the higher total RNA and protein levels. Lower specific growth rates in strain P+ appear to be related to the decrease in the rate of synthesis of nonrecombinant protein, as well as a decrease in the activities of the pentose phosphate (PP) pathway and TCA cycle. A very different way of entry into the stationary phase was observed for each strain: in the wild-type strain most metabolic fluxes decreased and fluxes related to energy reserve synthesis increased, while in the P+ strain the flux of 22 reactions (including PP pathway and amino acids biosynthesis) related to SOD production increased their fluxes. Changes in SOD production rates at different physiological states appear to be related to the differences in building blocks availability between respirofermentative and oxidative metabolism. Using the present expression system, ideal conditions for SOD synthesis are represented by either active growth during respirofermentative metabolism or transition from a growing to a nongrowing state. An increase in SOD flux could be achieved using an expression system nonassociated to growth and potentially eliminating part of the metabolic burden.  相似文献   

12.
Aiming at to enhance the production of penicillin G acylase (PGA) by Bacillus megaterium, we have performed flasks experiments using different medium composition. Using 51 g/L of casein hydrolyzed with Alcalase and 2.7 g/L of phenylacetic acid (PhAc), the following carbon substrates were tested, individually and combined: glucose, glycerol, and lactose (present in cheese whey). Glycerol and glucose showed to be effective nutrients for the microorganism growth but delayed the PGA production. Cheese whey always increased enzyme production and cell mass. However, lactose (present in cheese whey) was not a significant carbon source for B. megaterium. PhAc, amino acids, and small peptides present in the hydrolyzed casein were the actual carbon sources for enzyme production. Replacement of hydrolyzed casein by free amino acids, 10.0 g/L, led to a significant increase in enzyme production (app. 150%), with a preferential consumption of alanine, aspartic acid, glycine, serine, arginine, threonine, lysine, and glutamic acid. A decrease of the enzyme production was observed when 20.0 g/L of amino acids were used. Using the single omission technique, it was shown that none of the 18 tested amino acids was essential for enzyme production. The use of a medium containing eight of the preferentially consumed amino acids lead to similar enzyme production level obtained when using 18 amino acids. PhAc, up to 2.7 g/L, did not inhibit enzyme production, even if added at the beginning of the cultivation.  相似文献   

13.
A synthetic medium SM-3 has been elaborated for growth of Streptococcus lactis strain 51, which contains the minimal number of organic components required for the growth of this strain and nisin production. This medium contains 9 amino acids, 4 vitamins from B group, glucose and mineral salts. Addition of biotin to the medium stimulated the growth of the strain, while the addition of purines and/or pyrimidines had no effect. Hitherto biotin has been considered to be necessary for the growth of S. lactis and purines and pyrimidines were believed to stimulate the growth of these bacteria. In strain 51 the minimal requirements for growth were also the minimal requirements for nisin biosynthesis. Strain 51 produced 3-4 times less nisin in medium SM-3 than in a complex medium. The addition of one of four amino acids (serine, proline, cysteine or cystine) to SM-3 medium increased the amount of antibiotic produced. The addition of all four amino acids simultaneously, caused formation of nisin amounts similar to those produced in complex medium.  相似文献   

14.
Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation.  相似文献   

15.
Lactococcus lactis NCDO 2118 was grown in a simple synthetic medium containing only six essential amino acids and glucose as carbon substrates to determine qualitatively and quantitatively the carbon fluxes into the metabolic network. The specific rates of substrate consumption, product formation, and biomass synthesis, calculated during the exponential growth phase, represented the carbon fluxes within the catabolic and anabolic pathways. The macromolecular composition of the biomass was measured to distribute the global anabolic flux into the specific anabolic pathways. Finally, the distribution of radiolabeled substrates, both into the excreted fermentation end products and into the different macromolecular fractions of biomass, was monitored. The classical end products of lactic acid metabolism (lactate, formate, and acetate) were labeled with glucose, which did not label other excreted products, and to a lesser extent with serine, which was deaminated to pyruvate and represented approximately 10% of the pyruvate flux. Other minor products, keto and hydroxy acids, were produced from glutamate and branched-chain amino acids via deamination and subsequent decarboxylation and/or reduction. Glucose labeled all biomass fractions and accounted for 66% of the cellular carbon, although this represented only 5% of the consumed glucose.  相似文献   

16.
17.
A miniaturized reactor system with on‐line measurement of respiration rates by membrane inlet mass spectrometry was applied for the on‐line metabolic flux analysis at different phases of a 1.2 L batch culture of lysine‐producing Corynebacterium glutamicum. For this purpose, cells taken from the batch culture were transferred into the 12 mL mini reactor, and incubated for 15 min with [1‐18O]glucose. Quantification of oxygen uptake rate and CO2 mass isotopomer production rates in combination with a simple metabolic model allowed the estimation of the flux partitioning ratio between the pentose phosphate pathway and glycolysis during the process. The relative flux into the pentose pathway increased during growth, and reached maxima at 11 and 17 h cultivation time coinciding with maxima of the differential lysine yield. The developed system is a promising tool for determination of metabolic flux dynamics in industrially relevant batch and fed‐batch cultures.  相似文献   

18.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

19.
The gluconeogenic phosphoenolpyruvate (PEP) carboxykinase is active in Escherichia coli during its growth on glucose. The present study investigated the influence of growth rates and PEP carboxykinase knockout on the anaplerotic fluxes in E. coli. The intracellular fluxes were determined using the complementary methods of flux ratio analysis and metabolic flux analysis based on [U-(13)C(6)]glucose labeling experiments and 2D nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids and glycerol. Significant activity of PEP carboxykinase was identified in wild-type E. coli, and the ATP dissipation for the futile cycling via this reaction accounted for up to 8.2% of the total energy flux. Flux analysis of pck deletion mutant revealed that abolishment of PEP carboxykinase activity resulted in a remarkably reduced flux through the anaplerotic PEP carboxylase and the activation of the glyoxylate shunt, with 23% of isocitrate found being channeled in the glyoxylate shunt. The changes in intracellular metabolite concentrations and specific enzyme activities associated with different growth rates and pck deletion, were also determined. Combining the measurement data of in vivo fluxes, metabolite concentrations and enzyme activities, the in vivo regulations of PEP carboxykinase flux, PEP carboxylation, and glyoxylate shunt in E. coli are discussed.  相似文献   

20.
Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a fed-batch experiment with both essential and nonessential amino acids were compared. The fed-batch with glutamine led to a maximum cell density of 2.4x10(6) cells/ml compared to 1.8x10(6) cells/ml achieved in a batch mode. In this fed-batch with glutamine, it was also found that 2.5 mM ammonia was produced compared to the batch which had a final ammonia concentration of 1 mM. Ammonia was found to be growth inhibiting for this cell line at a concentration starting at 1 mM. During the fed-batch with glutamine, the flux analysis shows that a majority of amino acid fluxes and Kreb's cycle fluxes, except for glutamine flux, are decreased. This observation led to the conclusion that the main nutrient used is glutamine and that during the batch there is an overflow in the Kreb's cycle. Thus, a fed-batch with glutamine permits a better utilization of this nutrient. A fed-batch with essential amino acid without glutamine was also assayed in order to reduce ammonia production. The maximum cell density was increased further to 3x10(6) cells/ml and ammonia production was reduced below 1 mM. Flux analysis shows that the cells could adapt to a medium with low glutamine by increasing the amino acid fluxes toward the Kreb's cycle. Adding nonessential amino acids during this feeding strategy did not improve growth further and the nonessential amino acids accumulated in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号