首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of insulin uptake and/or degradation in the peritubular circulation of the kidney was investigated using nonfiltering perfused rat kidneys, in which glomerular filtration was sufficiently reduced. After perfusion of A14-125I-insulin in the nonfiltering kidney for designated intervals, the acid-wash technique was employed to separately measure the acid-extractable and acid-resistant A14-125I-insulin, which were quantitated by HPLC and TCA-precipitability. HPLC profiles showed that the nonfiltering kidney metabolizes A14-125I-insulin only to a small extent during 1-h perfusion, suggesting that the peritubular clearance of A14-125I-insulin was not due to extracellular degradation but for the most part to uptake by the kidney. Acid-extractable A14-125I-insulin rapidly increased with time and reached pseudo-equilibrium with perfusate at approx. 10 min, whereas acid-resistant A14-125I-insulin increased continuously. An endocytosis inhibitor, phenylarsine oxide, inhibited significantly the acid-resistant A14-125I-insulin with no change in acid-extractable A14-125I-insulin, suggesting that the peritubular uptake of A14-125I-insulin largely represents endocytosis of the peptide into the intracellular space. Moreover, both the acid-extractable and acid-resistant A14-125I-insulin were significantly decreased in the presence of unlabeled insulin (1 microM). These lines of evidence suggest that insulin is taken up by the nonfiltering perfused kidney via receptor-mediated endocytosis (RME), which possibly occurs at the basolateral side of renal tubular cells, and that the peritubular clearance of insulin is largely accounted for by this mechanism.  相似文献   

2.
Using 10-15 day neonatal rabbit brain cells, we studied the internalization (n = 6) and intracellular degradation (n = 8) of specifically bound 125I-insulin. In addition we investigated the association between the internalization of the specifically bound 125I-insulin and the metabolic effects of insulin such as glucose (n = 13) and amino-acid (leucine) uptake (n = 6). Phenylarsine oxide (10 microM), an agent that inhibits the internalization of the insulin receptor (n = 6) decreased the specifically bound 125I-insulin in the intact and trypsin-resistant (inside) part of the brain cells by 50% (p less than 0.05). On the other hand chloroquine (100 microM), a lysosomotropic agent that interferes with the intracellular degradation of the insulin receptor (n = 8) increased two-fold the 125I-insulin specifically bound to the intact and trypsin resistant part of the cells (p less than 0.05). Both these agents did not alter the time-dependent basal glucose uptake by the brain cells. Glucose alone regulated its own uptake (n = 4) whereas 1 X 10(-6) M insulin did not augment the glucose uptake (n = 11+13) above basal. Similarly leucine regulated the leucine uptake (n = 4) but insulin did not alter this basal uptake by the brain cells (n = 6). In summary we observed no associated glucose or leucine uptake along with the presence of internalization and intracellular degradation of specifically bound 125I-insulin in the brain cells.  相似文献   

3.
A tissue-screening survey employing quantitative radioautography was carried out at 2 min after the intravascular injection of 125I-insulin into laboratory rats. The results revealed a substantial binding of insulin to cells forming the proximal convoluted tubule in kidney, hepatocytes of liver, acinar cells of the pancreas, parenchymal cells of the adrenal cortex and medulla, and epithelial cells of the gastrointestinal tract. Control experiments indicated that this binding was due to a specific interaction with the insulin receptor, except in the case of kidney where the binding was shown to be nonspecific. Although the major target for insulin action (liver) clearly demonstrated specific insulin binding, several other classical targets (adipocytes, skeletal, cardiac, and smooth muscle cells) showed no specific 125I-insulin binding and therefore indicated the limits of sensitivity of the in vivo radioautographic method. Nevertheless, the working hypothesis of a direct correlation of insulin receptor density with insulin action points to the hitherto unemphasized targets of pancreas, adrenal gland, and gastrointestinal tract as major sites of insulin action in the body.  相似文献   

4.
Neuronal cells from 1-day-old rat brain in primary culture have been utilized in the present study to characterize insulin-binding sites and a possible action of insulin on these cells. Binding of 125I-insulin to neuronal cultures was 90% specific and time-dependent and reached equilibrium in 120 min. Specific binding was reversible with greater than 90% of binding dissociable within 120 min with a t1/2 of dissociation of 15 min. Various insulin analogues competed for 125I-insulin binding to neuronal cultures according to their known biological potencies. Scatchard analysis of competition data yielded a typical curvilinear plot providing a class of high affinity (Kd = 11 nM) and low affinity (Kd = 65 nM) binding sites. Light microscopic autoradiographic analysis of 125I-insulin bound to neuronal cultures revealed the presence of silver grains predominantly on the neurites with occasional occurrence on the cell soma. Insulin had no effect on neuronal 2-deoxyglucose uptake in contrast with our previous findings demonstrating a 2-fold stimulation of 2-dGlc uptake into astrocyte glial cells from rat brain (Clarke, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizada, M. K. (1984) J. Biol. Chem. 259, 11672-11675). Incubation of neuronal cultures with insulin caused a dose-dependent inhibition of [3H]norepinephrine uptake with significant inhibition occurring at 1.67 X 10(-11) M. These findings demonstrate that: 1) neuronal cells in primary culture possess specific insulin receptors which are predominantly located on neurites and 2) insulin modulates monoamine uptake in these cultures which suggests that insulin may modulate neural signaling via specific neuronal insulin receptors.  相似文献   

5.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

6.
The effect of pilocarpine and food uptake on the rate of incorporation of [3H]-leucine in vivo was measured by means of quantitative radioautography in three exocrine cells of the rat: the acinar and the granular duct cells of the submandibular and the acinar cells of the parotid gland. The three cell types react differently. The submandibular acinar cells showed a decrease in incorporation rate after pilocarpine administration but not after feeding. The incorporation rate of the granular duct cells of the submandibular gland remains constant after both stimulations. The acinar cells of the parotid gland show an increase in incorporation rate of [3H]-leucine in response to both. The contrast between the submandibular and the parotid gland could also be demonstrated radiobiochemically, the results reflecting the incorporation rates of the acinar cells of both glands, giving no information on the contribution of other cell types. The decrease in incorporation rate of the submandibular gland acinar cells is accompained by a shift of polyribosomes towards monomers.  相似文献   

7.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

8.
胰岛素对胰腺外分泌功能的影响   总被引:1,自引:0,他引:1  
杨英魁  朱文玉 《生理学报》1995,47(3):238-244
我们用链佐霉素选择性地破坏胰岛B细胞,研究胰岛素在糖尿病大鼠胰腺外分泌功能变化中的作用。结果表明:糖尿病时,胰淀粉酶含量显著减少,胰淀粉酶mRNA也降低为对照组的3.2±0.5%(P<0.0)。体外实验表明,糖尿病大鼠胰腺腺泡上125I-胰岛素的结合明显增多。Bmax由对照组的2.8±10-9mol/L增加为3.5±10-9mol/L(P<0.01)。腺泡对3H-葡萄糖的摄取,3H-亮氨酸的掺入以及腺泡膜Na+-K+ATP酶的活性均比正常组明显降低(P<0.01)。补充胰岛素,可翻转上述变化。从而提示,胰岛素在调节胰腺外分泌功能方面具有重要作用。  相似文献   

9.
Binding of 125I-insulin to primary cultures of differentiated mouse astrocytes was time-dependent, reaching equilibrium after 2 h at 22 degrees C, with equilibrium binding corresponding to 20.79 fmol/mg of protein, representing approximately 5,000 occupied binding sites/cell. The half-life of 125I-insulin dissociation at 22 degrees C was 2 min, with an initial dissociation rate constant of 4.12 X 10(-2) s-1. Dissociation of bound 125I-insulin was not accelerated significantly in the presence of unlabeled insulin (16.7 microM). Porcine and desoctapeptide insulins competed for specific 125I-insulin binding in a dose-dependent manner, whereas growth hormone, glucagon, and somatostatin did not. For porcine insulin, Scatchard analysis suggested multiple-affinity binding sites (high-affinity Ka = 4.92 X 10(8) M-1; low-affinity Ka = 0.95 X 10(7) M-1). After incubation with insulin (0.5 microM) for 2 h at 37 degrees C, increases above basal values of 254 +/- 23 and 189 +/- 34% for [3H]uridine uptake and incorporation, respectively, were observed. After incubation with insulin (0.5 microM) for 24 h at 37 degrees C, there were increases of 145 +/- 6% for [3H]thymidine uptake and 166 +/- 11% for thymidine incorporation. Basal and stimulated uridine and thymidine uptake and incorporation were inhibited by 50 microM dipyridamole. These studies confirm that mouse astrocytes in vitro possess specific insulin receptors and demonstrate an effect of insulin on pyrimidine nucleoside uptake and incorporation.  相似文献   

10.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

11.
Protamine-125I-insulin with low specific radioactivity was prepared using 125, 127I-insulin, 0.2 I/mole. The preparations were characterized by disc electrophoresis, isoelectric focusing and analytical gel chromatography in order to evaluate the suitability of 125I-insulin as marker for insulin in protamine-insulin. The stability of the preparations was followed up to 90 days at 4 degrees C. The biological and immunological activity was determined in mice, isolated rat fat cells and by radioimmunoassay. It was concluded that both from a chemical and a biological point of view, the protamine-125I-insulin is a satisfactory preparation that might be used in absorption studies.  相似文献   

12.
The existence of insulin receptors in rabbit erythrocytes was studied by evaluating the specific binding of 125I-insulin to erythrocyte membranes. The binding of 125I-insulin was pH, time and temperature dependent. Maximal binding was achieved by incubation for 20 hr at 0 degrees C. The optimum pH was 7.4. Treatment with cations and enzymes enhanced the specific binding except for with trypsin, the treatment which greatly reduced the binding. Unlabeled insulin over a wide range of concentrations competitively inhibited the binding of 125I-insulin, while the binding was little affected by structurally unrelated hormones. Scatchard plot was represented as a concave curve. Binding sites of relatively high affinity (K1 = 0.9 X 10(9) M-1) and low capacity (8.0 X 10(13)/g protein) could be distinguished from those of lower affinity (K2 = 0.8 X 10(7) M-1) and higher capacity (1.8 X 10(15)/g protein). Hill's analysis and dissociation of 125I-insulin from membranes demonstrated the characteristics of negative cooperation between receptor sites. Both incorporation of H3(32)PO4 to erythrocyte membranes and uptake of 45Ca were significantly reduced by the addition of unlabeled insulin. Unlabeled insulin produced no effect on uptake of 45Ca into trypsin-treated erythrocytes. On the basis of these results, it was suggested that rabbit erythrocytes might possess biologically significant insulin receptors located on the cell membranes.  相似文献   

13.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

14.
Treatment of lymphoblastoid cells with interferon decreases insulin binding   总被引:1,自引:0,他引:1  
Lymphoblastoid Daudi cells, which are highly sensitive to growth inhibition by interferon (IFN), can be grown in a defined serum-free medium containing insulin, transferrin, and albumin as the only proteins. We examined whether the growth inhibition by IFN could be in part due to a change in receptors for insulin or transferrin. Cells treated for at least 2 days with 100 units/ml of IFN-alpha 2 bound less 125I-insulin and after 3 days of treatment this binding was reduced by more than 50%. No change in the binding of 125I-transferrin was observed. Treatment with IFN of Raji cells, which are resistant to growth inhibition by IFN, resulted in a similar decrease in 125I-insulin binding. Growth inhibition of Daudi cells by serum deprivation had no effect on 125I-insulin binding. Therefore, the IFN-induced loss of insulin binding sites is not a consequence of growth inhibition.  相似文献   

15.
Synopsis Horseradish peroxidase (HRP) has been used as a tracer to study movements of solutions injected retrogradely via the duct of submandibular glands in rabbits. 0.1 ml of solution was injected either manually or by a constant hydrostatic pressure, and the subsequent distribution of HRP in the gland and duct at different times after injection has been examined histochemically at light and electron microscopical levels.Shortly after the injections, strong interstitial staining for peroxidase resulted from passage between acinar cells. Some sites of cellular uptake were observed and staining occurred in some ductal cells even when the duct had been cut at the hilum to minimize pressure effects. It is not known whether this diffuse uptake represents a physiological or pathological phenomenon. Some interstitial activity still remained 24 hr after injection but had disappeared by 48 hr. Inflammatory cells first appeared in the gland about 4 hr after the injection and slowly increased up to about 24 hr after injection.The results indicate that the HRP reaches the interstices of the gland principally by penetration between acinar cells, and that the junctional complexes between striated duct cells appear to be more resistant to disruption by luminal pressures.  相似文献   

16.
Synopsis Rat pancreas was examined by ultrastructural cytochemical methods for localizing cations and anions, as well as polyanions and, more specifically, sulphated mucosubstance. Exceptionally abundant antimonate-precipitable cation was demonstrated between pancreatic acinar cells and at the base of the centro-acinar and other duct epithelial cells. Precipitates of nuclear heterochromatin appeared lighter whereas those of mitochondria and cytoplasm were coarser and more conspicuous in acinar that duct cells. Stimulation with synthetic secretin at a low level diminished antimonate reactivity of nuclei as well as the precipitation at the basement membrane of centro-acinar cells. At a higher dose, secretin selectively eliminated precipitation between and below centro-acinar and other duct cells while inducing increased antimonate-reactive cation in centro-acinar cells and the acinar lumens. Pancreozymin stimulation elimated antimonate-precipitable cations between acinar cells and, to a much lesser extent, those between duct cells and increased cytoplasmic precipitates on granular reticulum of acinar cells.Silver-precipitable anions were localized on the luminal surface of the apical plasma lemma and the outer surface of the latero-basal plasmalemma of centro-acinar cells but not on acinar cell surfaces. Silver precipitates also occurred on junctional complexes of acinar and duct epithelial cells and at tight junctions of acinar cells and on the inner face of the lateral plasmalemma of acinar cells.Dialysed iron staining demonstrated the most number of sites of acid mucosubstance on the luminal surface of the plasmalemma of acinar cells. Lateral and basal plasmalemmas of centro-acinar and more distal duct cells stained lightly with dialysed iron but those of acinar cells did not. Dialysed iron visualized acid mucosubstance in the lamina lucida of the basement membrane of duct but not of acinar cells. Dialysed iron staining of the plasma membranes succumbed to prior sialidase treatment whereas that of basement membrane resisted digestion. High iron diamine staining demonstrated sulphated mucosubstance in the lamina lucida of the duct basement membrane exclusively. The cytochemical results implicate centro-acinar cells as primarily responsible for contributing fluid and electrolytes to pancreatic secretion.  相似文献   

17.
Degradative processing of internalized insulin in isolated adipocytes   总被引:9,自引:0,他引:9  
Based on the distribution of 125I-insulin between the cell surface and the cell interior, it was found that insulin rapidly binds (t 1/2 = 0.4 min) to surface receptors at 37 degrees C, and after an initial lag period of about 1 min, accumulates intracellularly until steady state is reached (t 1/2 = 3.5 min). At this time about 40% of the total cell-associated 125I-insulin resides in the cell interior reflecting a dynamic equilibrium between the rate of insulin endocytosis and the rate at which internalized insulin is processed and extruded from cells. Since this percentage decreased to 15% at 16 degrees C, it appears that internalization is more temperative-sensitive than the intracellular processing of insulin. When 125I-insulin was preloaded into the cell interior, it was found that internalized insulin was rapidly released to the medium at 37 degrees C (t 1/2 = 6.5 min) and consisted of both degraded products and intact insulin (as assessed by trichloroacetic acid precipitability and column chromatography). Since 75% of internalized insulin was ultimately degraded, and 25% was released intact, this indicates that degradation is the predominant pathway. To determine when incoming insulin enters a degradative compartment, cells were continually exposed to 125I-insulin and the composition of insulin in the cell interior over time was assessed. After 2 min all endocytosed insulin was intact, between 2-3 min degradation products began accumulating intracellularly, and by 15 min equilibrium was reached with 20% of internalized insulin consisting of degraded products. Degraded insulin was then released from the cell interior within 4-5 min after endocytotic uptake, since this was the earliest time chloroquine was found to inhibit the release of degradation products. Moreover, the final release of degraded insulin was not inhibitable by the energy depleter dinitrophenol. Thus, within the degradative pathway, insulin enters lysosomes by 2.5-3 min and is released to the medium by simple diffusion after an additional 1.5-2 min.  相似文献   

18.
In this study, we report a procedure for producing antisera that block the binding of 125I-insulin to its receptor. After 2 injections with intact IM-9 cultured human lymphocytes, the antisera from 8 of 17 BalbC mice inhibited the binding of 125I-insulin to its receptor on IM-9 cells by 50% or greater. One antiserum at dilutions of 1:200 and 1:50 inhibited the binding of 125I-insulin by 50% and 80%, respectively. Four lines of evidence indicated that the inhibition of 125I-insulin binding by this antiserum was due to a specific immunoglobulin directed against the insulin receptor. First, removal of the immunoglobulin fraction of the antiserum resulted in a complete loss of its inhibitory activity. Second, the antiserum inhibited the binding of 125I-insulin to its receptor on both human cultured lymphocytes and human placenta particles. Third, the antisera bound solubilized insulin-receptor complexes. Finally, the antiserum did not inhibit the binding of 125I-human growth hormone to its receptor on IM-9 lymphocytes. These studies demonstrate therefore, a simple method for producing antibodies that block the binding of 125I-insulin to the human insulin receptor.  相似文献   

19.
Binding and degradation of 125I-insulin by rat hepatocytes.   总被引:33,自引:0,他引:33  
The binding and the velocity of degradation of 125I-insulin in the absence or presence of varying concentrations of native procline insulin were studied using isolated rat hepatocytes. At insulin concentrations ranging from 5 X 10(-11) to 10(-6) M, insulin degradation velocity showed a first order dependence on the total concentration of insulin bound at steady state. The overall reaction had an apparent rate constant of 0.030 +/- 0.011 min-1. Furthermore, the degradation of a given amount of 125I-insulin bound to cells was more rapid and extensive than the degradation of the same amount of insulin which had been newly exposed to fresh cells. Mid pretreatment of isolated hepatocytes with trypsin or chymotrypsin at concentrations of 5 to 20 mug/ml depressed to the same degree the amount of 125-I-insulin bound at steady state and the 125I-insulin degradation velocity. Peptide or protein hormones unrelated to insulin, including the oxidized A and B chains of insulin, failed to depress the amount of insulin bound or the velocity of insulin degradation when present at concentrations of 10-5 or 10-6 M. Over a wide range of concentrations, various synthetic insulin analogues and naturally occurring insulins depressed to the same degree the amount of 125I-insulin bound at steady state and the 125I-insulin degradation velocity. These observations suggest that insulin bound to hepatocyte plasma membranes is the substrate for insulin degradation by the liver.  相似文献   

20.
The roles of apoptosis and mitosis of acinar and duct cells in the atrophy of the sublingual gland of rat induced by double duct ligation was investigated using immunohistochemistry for proliferating cell nuclear antigen (PCNA), terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end labeling (TUNEL), and transmission electron microscopy (TEM). Many PCNA-positive duct cells were observed 3 days after duct ligation, and the numbers decreased thereafter. At 3 and 5 days, several TUNEL-positive acinar cells were observed and typical apoptotic acinar cells were identified by TEM. Necrotic acinar cells were also observed ultrastructurally. After 7 days, there were few acini but many ducts, as well as many structures representing transition from acinus to duct. These observations demonstrate that acinar cell loss by apoptosis and duct cell proliferation by mitosis occur in atrophic sublingual glands as well as in other atrophic salivary glands. In addition, it appears that the transition from acinar to duct cell and the necrosis of acinar cells play important roles in the atrophy of the sublingual gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号