首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a recently identified autosomal dominant cerebral arteriopathy characterized by the recurrence of subcortical infarcts leading to dementia. A genetic linkage analysis conducted in two large families recently allowed us to map the affected gene on chromosome 19 in a 12-cM interval bracketed by D19S221 and D19S215. In the present study, these first 2 families and 13 additional ones, including a total of 199 potentially informative meiosis, have been genotyped with eight polymorphic markers located between D19S221 and D19S215. All families were linked to chromosome 19. The highest combined lod score (Zmax = 37.24 at θ = .01) was obtained with marker D19S841, a new CAn microsatellite marker that we isolated from chromosome 19 cosmids. The recombinant events observed within these families were used to refine the genetic mapping of CADASIL within a 2-cM interval that is now bracketed by D19S226 and D19S199 on 19pl3.1. These data strongly suggest the genetic homogeneity of this recently identified condition and establish the value of its clinical and neuroimaging diagnostic criteria. Besides their importance for the ongoing positional cloning of the CADASIL gene, these data help to refine the genetic mapping of CADASIL relative to familial hemiplegic migraine and hereditary paroxysmal cerebellar ataxia, conditions that we both mapped within the same chromosome 19 region.  相似文献   

2.
Migraine is a common neurological disease with a major genetic component. Recently, it has been proposed that a single locus on chromosome 19p13 contributes to the genetic susceptibility of both rare familial hemiplegic migraine (FHM) and more common types of migraine, migraine with aura and migraine without aura. We analyzed 16 families for co-segregation of migraine with aura and chromosome 19p13 markers. Using multipoint model-free linkage analysis, we obtained a lod score of 4.28 near D19S592. Using an affecteds-only model of linkage, we observed a lod score of 4.79 near D19S592. We were able to provide statistical evidence that this locus on chromosome 19p13 is most likely not the gene CACNA1A, mutations in which cause FHM. These data indicate that chromosome 19p13 contains a locus which contributes to the genetic susceptibility of migraine with aura that is distinct from the FHM locus.  相似文献   

3.
Genetic isolates are highly useful in analyses of the molecular background of complex diseases since the enrichment of a limited number of predisposing genes can be predicted in representative families or in specific geographical regions. It has been suggested that the pathophysiology and etiology of familial hemiplegic migraine (FHM) and typical migraine with aura are most probably the same. Recent assignment of FHM locus to chromosome 19p in two French families makes it now possible to test this hypothesis. We report here linkage data on four families with multiple cases of migraine disorder originating from the genetically isolated population of Finland. We were interested to discover whether the migraine in these families would also show linkage to the markers on 19p. We could exclude a region of 50 cM, flanking the reported FHM locus, as a site of migraine locus in our four families. It seems evident that locus heterogeneity exists between different diagnostic classes of migraine spectrum of diseases and also between different ethnic groups.  相似文献   

4.
Familial periodic cerebellar ataxia (FPCA) is a heterogeneous group of rare autosomal dominant disorders characterized by episodic cerebellar disturbance. A potassium-channel gene (KCNA1) has been found to be responsible for one of its subgroups, familial periodic cerebellar ataxia with myokymia (FPCA/+M; MIM 160120). A different subgroup that is not associated with myokymia (FPCA/-M; MIM 108500) was recently mapped to chromosome 19p. Here we have performed linkage analysis in two large families with FPCA/-M that also demonstrated neurodegenerative pathology of the cerebellum. Three markers in 19p13 gave significant lod scores (> 3.0), while linkage to KCNA1 and three known loci for spinocerebellar ataxia (SCA1, SCA2, and SCA3) was excluded. The highest lod score was obtained with the marker D19S413 (4.4 at recombination fraction 0), and identification of meiotic recombinants in affected individuals placed the locus between the flanking markers D19S406 and D19S226, narrowing the interval to 19 cM. A CAG trinucleotide-repeat expansion was detected in one family but did not cosegregate with the disease.  相似文献   

5.
Wolfram syndrome (DIDMOAD syndrome; MIM 222300) is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and bilateral optic atrophy. Previous linkage analysis of multiply affected families indicated that the gene for Wolfram syndrome is on chromosome 4p, and it produced no evidence for locus heterogeneity. We have investigated 12 U.K. families with Wolfram syndrome, and we report confirmation of linkage to chromosome 4p, with a maximum two-point LOD score of 4.6 with DRD5, assuming homogeneity, and of 5.1, assuming heterogeneity. Overlapping multipoint analysis using six markers at a time produced definite evidence for locus heterogeneity: the maximum multipoint LOD score under homogeneity was <2, whereas when heterogeneity was allowed for an admixture a LOD of 6.2 was obtained in the interval between D4S432 and D4S431, with the peak close to the marker D4S3023. One family with an atypical phenotype was definitely unlinked to the region. Haplotype inspection of the remaining 11 families, which appear linked to chromosome 4p and had typical phenotypes, revealed crossover events during meiosis, which also placed the gene in the interval D4S432 and D4S431. In these families no recombinants were detected with the marker D4S3023, which maps within the same interval.  相似文献   

6.
SCA3, the gene for spinal cerebellar ataxia 3, was recently mapped to a 15-cM interval between D14S67 and D14S81 on chromosome 14q, by linkage analysis in two families of French ancestry. The SCA3 candidate region has now been refined by linkage analysis with four new microsatellite markers (D14S256, D14S291, D14S280, and AFM343vf1) in the same two families, in which 19 additional individuals were genotyped, and in a third French family. Combined two-point linkage analyses show that the new markers, D14S280 and AFM343vf1, are tightly linked to the SCA3 locus, with maximal lod scores, at recombination fraction, (theta) = .00, of 7.05 and 13.70, respectively. Combined multipoint and recombinant haplotype analyses localize the SCA3 locus to a 3-cM interval flanked by D14S291 and D14S81. The same allele for D14S280 segregates with the disease locus in the three kindreds. This allele is frequent in the French population, however, and linkage disequilibrium is not clearly established. The SCA3 locus remains within the 29-cM region on 14q24.3-q32.2 containing the gene for the Machado-Joseph disease, which is clinically related to the phenotype determined by SCA3, but it cannot yet be concluded that both diseases result from alterations of the same gene.  相似文献   

7.
Linkage analysis in separately ascertained families of probands with juvenile myoclonic epilepsy (JME) has previously provided evidence both for and against the existence of a locus (designated "EJM1"), on chromosome 6p, predisposing to a trait defined as either clinical JME, its associated electroencephalographic abnormality, or idiopathic generalized epilepsy. Linkage analysis was performed in 19 families in which a proband and at least one first- or two second-degree relatives have clinical JME. Family members were typed for seven highly polymorphic microsatellite markers on chromosome 6p: D6S260, D6S276, D6S291, D6S271, D6S465, D6S257, and D6S254. Pairwise and multipoint linkage analysis was carried out under the assumptions of autosomal dominant inheritance at 70% and 50% penetrance and autosomal recessive inheritance at 70% and 50% penetrance. No significant evidence in favor of linkage to the clinical trait of JME was obtained for any locus. The region formally excluded (LOD score < -2) by using multipoint analysis varies depending on the assumptions made concerning inheritance parameters and the proportion of linked families, alpha-that is, the degree of locus heterogeneity. Further analysis either classifying all unaffected individuals as unknown or excluding a subset of four families in which pyknoleptic absence seizures were present in one or more individuals did not alter these conclusions.  相似文献   

8.
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome‐wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow‐up in an additional 21 families at linked loci. We used two‐point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12‐22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1‐23.2, centering over the FHM2 locus (two‐point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine‐affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12‐22, and a second locus that may contribute to migraine in the general population at 1q23.1‐23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine‐mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy‐associated migraine.  相似文献   

9.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

10.
We examined a large French family with autosomal dominant cerebellar ataxia (ADCA) that was excluded from all previously identified spinocerebellar ataxia genes and loci. The patients-seven women and a 4-year-old boy-exhibited slowly progressive childhood-onset cerebellar gait ataxia associated with cerebellar dysarthria, moderate mental retardation (IQ 62-76), and mild developmental delays in motor acquisition. Nystagmus and pyramidal signs were also observed in some cases. This unique association of clinical features clearly distinguishes this new entity from other previously described ADCA. Cerebral magnetic-resonance imaging showed moderate cerebellar and pontine atrophy in two patients. We performed a genomewide search and found significant evidence for linkage to chromosome 19q13.3-q13.4, in an approximately 8-cM interval between markers D19S219 and D19S553.  相似文献   

11.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

12.
Nonsyndromic cleft lip with or without cleft palate (CL/P) is a common craniofacial developmental defect. Recent segregation analyses have suggested that major genes play a role in the etiology of CL/P. Linkage to 22 candidate genes was tested in 11 multigenerational families with CL/P, and 21 of these candidates were excluded. APOC2, 19q13.1, which is linked to the proto-oncogene BCL3, gave suggestive evidence for linkage to CL/P. The study was expanded to include a total of 39 multigenerational CL/P families. Linkage was tested in all families, using an anonymous marker, D19S178, and intragenic markers in BCL3 and APOC2. Linkage was tested under two models, autosomal dominant with reduced penetrance and affecteds only. Homogeneity testing on the two-point data gave evidence of heterogeneity at APOC2 under the affecteds-only model. Both models showed evidence of heterogeneity, with 43% of families linked at zero recombination to BCL3 when marker data from BCL3 and APOC2 were included. A maximum multipoint LOD score of 7.00 at BCL3 was found among the 17 families that had posterior probabilities > = 50% in favor of linkage. The transmission disequilibrium test provided additional evidence for linkage with the 3 allele of BCL3 more often transmitted to affected children. These results suggest that BCL3, or a nearby gene, plays a role in the etiology of CL/P in some families.  相似文献   

13.
We earlier reported significant evidence for linkage on chromosome 15q15 in periodic catatonia, a sub-phenotype of schizophrenic psychoses. The disorder is characterized by qualitative hyperkinetic and akinetic psychomotor disturbances through acute psychotic episodes and debilitating symptoms in the long term, with psychomotor weakness, grimacing facial movements and apathy. Here, we confirm mapping of a major gene locus on chromosome 15q15 in a second genome scan in a new set of four multiplex families. Non-parametric multipoint linkage analyses identified a broad region with a maximum peak of Z(all) =3.91 ( P=0.006) and Z(lr) =3.04 at D15S1234 ( P=0.001), satisfying conventional criteria for confirmed linkage. Parametric affected-only analyses under an autosomal dominant model gave a maximum HLOD score of 1.65 (D15S1234) with an estimated 47% of families being linked. Analysis of individual families showed that one large family showed linkage, whereas two others could be clearly excluded, confirming genetic heterogeneity. No other locus reached suggestive levels of significance. Haplotype analysis on chromosome 15 in this and previously linked families placed the susceptibility region to a 11-cM interval between marker D15S1042 and D15S659. Periodic catatonia is the first sub-phenotype of schizophrenic psychoses with confirmed linkage despite the existence of considerable genetic heterogeneity.  相似文献   

14.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

15.
Breast cancer is known to have an inherited component, consistent in some families with autosomal dominant inheritance; in such families the disease often occurs in association with ovarian cancer. Previous genetic linkage studies have established that in some such families disease occurrence is linked to markers on chromosome 17q. This paper reports the results of a collaborative linkage study involving 214 breast cancer families, including 57 breast-ovarian cancer families; this represents almost all the known families with 17q linkage data. Six markers on 17q, spanning approximately 30 cM, were typed in the families. The aims of the study were to define more precisely the localization of the disease gene, the extent of genetic heterogeneity and the characteristics of linked families and to estimate the penetrance of the 17q gene. Under the assumption of no genetic heterogeneity, the strongest linkage evidence was obtained with D17S588 (maximum LOD score [Zmax] = 21.68 at female recombination fraction [theta f] = .13) and D17S579 (Zmax = 13.02 at theta f = .16). Multipoint linkage analysis allowing for genetic heterogeneity provided evidence that the predisposing gene lies between the markers D17S588 and D17S250, an interval whose genetic length is estimated to be 8.3 cM in males and 18.0 cM in females. This position was supported over other intervals by odds of 66:1. The location of the gene with respect to D17S579 could not be determined unequivocally. Under the genetic model used in the analysis, the best estimate of the proportion of linked breast-ovarian cancer families was 1.0 (lower LOD-1 limit 0.79). In contrast, there was significant evidence of genetic heterogeneity among the families without ovarian cancer, with an estimated 45% being linked. These results suggest that a gene(s) on chromosome 17q accounts for the majority of families in which both early-onset breast cancer and ovarian cancer occur but that other genes predisposing to breast cancer exist. By examining the fit of the linkage data to different penetrance functions, the cumulative risk associated with the 17q gene was estimated to be 59% by age 50 years and 82% by age 70 years. The corresponding estimates for the breast-ovary families were 67% and 76%, and those for the families without ovarian cancer were 49% and 90%; these penetrance functions did not differ significantly from one another.  相似文献   

16.
Assignment of a susceptibility locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) to chromosome 1p remains controversial. We examined the relationship between CMM/DN and markers D1S47, PND, and D1S160 on seven new families (set B) plus updated versions of six previously reported families (set A). Three linkage analyses were performed: (1) CMM alone--all individuals without confirmed melanoma or borderline lesions were considered unaffected (model I); (2) CMM/DN with variable age at onset and sporadics (model II); and (3) CMM/DN using the model of Bale et al. (model III). For CMM alone and D1S47, Zmax = 3.12 at theta = .10. For D1S160 and CMM alone, Zmax = 1.76 at theta = .10. PND showed no evidence for linkage to CMM alone. Models II and III showed strong evidence for linkage to D1S47, D1S160, and PND in the set A pedigrees but not in the set B families. We tested for homogeneity of CMM/DN (model II) by splitting families into two groups on the basis of (1) the proportion of CMM/DN cases and (2) the occurrence of immune-related tumors. In group 1 there was significant evidence of heterogeneity with both D1S47 and D1S160, and in group 2 there was significant evidence of heterogeneity with D1S160. Thus, diagnostic, clinical, and genetic heterogeneity are the likely reasons that previous studies have failed to confirm linkage of CMM/DN to chromosome 1p. The results showed significant evidence for a CMM locus linked to D1S47, as well as significant evidence for heterogeneity with only a subset of the families appearing linked to chromosome 1p.  相似文献   

17.
Adolescent idiopathic scoliosis (AIS) is one of the most common orthopedic disorders, affecting up to 4% of schoolchildren worldwide. We studied seven unrelated multiplex families of southern Chinese descent with AIS, consisting of 25 affected members. A genomewide scan with >400 fluorescent microsatellite markers was performed. Multipoint linkage analysis by GENEHUNTER revealed significant linkage of the abnormal phenotype to the distal short arm of chromosome 19, with both a maximum multipoint LOD score and a nonparametric LOD score of 4.93. Two-point linkage analysis by MLINK gave a LOD score of 3.63 (recombination fraction theta[m=f]=0.00) at D19S216. Further high-density mapping and informative recombinations defined the AIS critical region in the vicinity of D19S216, flanked by D19S894 and D19S1034, spanning 5.2 cM on the sex-averaged genetic map on chromosome 19p13.3.  相似文献   

18.
The locus for autosomal dominant ataxia with a diagnosis of olivo-ponto-cerebellar atrophy at autopsy has been previously assigned to chromosome 6p. However, evidence for two alternative locations has been reported. We have recently described a large potential founder-effect population of such patients in the Holguin province of Cuba. With an estimated 1,000 patients available for analysis, this extensive cluster of families provides a unique opportunity for the definitive localization of the genetic mutation. Linkage analysis between the disease locus in this population and markers within and flanking the HLA region on chromosome 6 were undertaken in 12 families comprising over 100 affected individuals. Despite similarity in the clinical phenotype between those families where the disease locus has been reported to be linked to the HLA locus and the Cuban patients, no evidence of linkage to this region could be demonstrated in the latter. The disease locus was excluded from a 96-cM genetic interval of the short arm of chromosome 6, encompassing the F13A1-HLA-GLO1-MUT/D6S4 loci. These data strongly support the existence of genetic heterogeneity for the disease.  相似文献   

19.
Genetic markers controlled by 21 genetic systems were studied in 13 families containing members suffering from various hereditary disorders involving ataxia. Classical cerebellar ataxia was present in four, Friedreich ataxia in two, hereditary spastic paraplegia in four, and the Charcot-Marie-Tooth syndrome in three families. In each family, every available member above the lowest age at onset observed in that family, was subjected to a thorough clinical investigation and blood was sampled for investigation of genetic markers.The families with cerebellar ataxia and with Charcot-Marie-Tooth syndrome contained enough informative relatives to allow a formal linkage study using the lodscore method. Three of the pedigress with cerebellar ataxia gave evidence of linkage between the disease and the HLA system with a combined lodscore of 2.128 at a recombination fraction of 0.05 for both sexes combined. The recombination fraction was considerably higher in females than in males, although the difference between the two sexes was not statistically significant.Negative lodscores were obtained for the remaining family with cerebellar ataxia, which might be due to the fact that this family only provided information on recombination in females. However, the clinical features in this family differed from those in the other three families by a significantly higher frequency of dementia and pyramidal tract lesions. Based on these observations and on contradictory results in the literature concerning linkage between cerebellar ataxia and HLA, we suggest that there are two forms of cerebellar ataxia: One (CA1) linked to HLA with symptoms restricted to lesions in the cerebellum and spinocerebellar system and another (CA2) not linked to HLA with symptoms from more wide-spread lesions of the CNS.None of the other genetic markers (except perhaps GLO) showed linkage to the cerebellar ataxias. Negative lodscores throughout with all 21 genetic markers were found in the families with Charcot-Marie-Tooth syndrome.There was no evidence for linkage between HLA on the one hand and Friedreich ataxia or hereditary spastic paraplegia on the other.List of Abbreviations HA Hereditary ataxias - HLA Major histocompatibility system - CA Cerebellar ataxia - FA Friedreich ataxia - HSP Hereditary spastic paraplegia - CMT Charcot-Marie-Tooth syndrome - MS Multiple sclerosis - Hp Haptoglobin - Gc Group-specific component - PGM Phosphoglucomutase, locus 1 - SP (AcP) Acid phosphatase - AK Adenylatekinase - PGD 6-phosphogluconatedehydrogenase - ADA Adenosinedeaminase - GPT Glutamate pyruvat transaminase - GT Galaktose-1-phosphat uridylyltransferase - EsP Carboxylesterase D - GLO Glyoxylase I This study was aided by grants from Warwara Larsen's Foundation, the Danish Multiple Sclerosis Society and the Medical Research Council  相似文献   

20.
Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at theta = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号