首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious tolerance is a term generally assigned to the process through which regulatory T cells (Tregs) transfer immunoregulatory properties to other T cells. In this study, we demonstrated that a similar process applies to human dendritic cells (DCs), albeit through a different mechanism. We induced and cloned proinsulin-specific Tregs using tolerogenic DCs and investigated mechanisms by which induced Ag-specific regulatory T cells (iaTregs) endorse the suppressive effects. iaTregs expressed FOXP3, programmed death-1, and membrane-bound TGF-β and upregulated IL-10 and CTLA-4 after stimulation with the cognate Ag. The iaTregs suppressed effector T cells only when both encountered the cognate Ags on the same APCs (linked suppression). This occurred independently of IL-10, TGF-β, programmed death-1, or CTLA-4. Instead, iaTregs used a granzyme B-mediated mechanism to kill B cells and monocytes, whereas proinflammatory DCs that resisted being killed were induced to upregulate the inhibitory receptors B7 (family) homolog 3 and ICOS ligand. These re-educated mature monocyte-derived dendritic cells (mDCs) suppressed effector T cells and induced IL-10-producing cells from the naive T cell pool. Our data indicated that human tolerogenic DCs confer infectious tolerance by inducing Ag-specific Tregs, which, in turn, re-educate proinflammatory mature DCs into DCs with regulatory properties.  相似文献   

2.
In vivo steady-state type I natural IFN-producing and dendritic cell (DC) development is largely dependent on Flt3 signaling. Natural IFN-producing and DC progenitors and their respective downstream cell populations express the flt3 receptor, and Flt3 ligand (Flt3L)(-/-) mice have reduced while Flt3L-injected mice develop markedly increased numbers of both cell types. In the present study, we show that SU11657, a small multitargeted receptor tyrosine kinase inhibitor with Flt3 affinity, suppressed in vitro natural IFN-producing and DC development in Flt3L-supplemented mouse whole bone marrow cell cultures in a dose-dependant manner, while DC development in GM-CSF-supplemented cultures was not affected. In vivo SU11657 application led to a significant decrease of both natural IFN-producing and DCs, comparable to the reduction observed in Flt3L(-/-) mice. Conversely, Flt3L plasma levels increased massively in inhibitor-treated animals, likely via a regulatory feedback loop, without being able to compensate for pharmacological Flt3 inhibition. No obvious toxicity was observed, and hemopoietic progenitor cell and stem cell function remained intact as assessed by myeloid colony-forming unit activity and in vivo bone marrow repopulation assays. Furthermore, upon treatment discontinuation, IFN-producing and DCs recovered to normal levels, proving that treatment effects were transient. Given the importance of IFN-producing and DCs in regulation of immune responses, these findings might lead to new pharmacological strategies in prevention and treatment of autoimmune diseases and complications of organ or blood cell transplantation.  相似文献   

3.
We used a comparative approach to identify the fetal liver tyrosine kinase 3 (flt3) ligand structure required for binding and function. Two conserved bovine flt3 ligand isoforms, which differ in a defined region within the extracellular domain, were identified and shown to be uniformly transcribed in individuals with diverse MHC haplotypes. Notably, at the amino acid level, the extracellular domain of the bovine flt3 ligand isoform 1 is 81 and 72% identical with the extracellular domains of the human and murine flt3 ligands, respectively, whereas isoform-2 has a deletion within this domain. Bovine flt3 ligand isoform 1, but not 2, bound the human flt3 receptor and stimulated murine pro B cells transfected with the murine flt3 receptor. This retention of binding and function allowed definition of key residues by identifying sequences conserved among species. We have shown that a highly conserved, 18 aa sequence within the flt3 ligand extracellular domain is required for flt3 receptor binding and function. However, a peptide representing this sequence is insufficient for receptor binding as demonstrated by its failure to inhibit the bovine flt3 ligand isoform 1 binding to the human flt3 receptor. The requirement for flanking structure was confirmed by testing bovine flt3 ligand isoform 1 constructs truncated at specific residues outside the 18 aa sequence. Overall, the flt3 ligand structure required for function is markedly similar to that of the related hemopoietic growth factors, CSF-1 and steel factor. This definition of the required flt3 ligand structure will facilitate development of agonists to enhance dendritic cell recruitment for vaccines and immunotherapy.  相似文献   

4.
We have previously reported that Fms-like tyrosine kinase-3 ligand (flt3-L) induced tumor stabilization and regression of palpable ectopic prostate tumors (TRAMP-C1). Although some mice remained "tumor free" for several months following termination of therapy, tumors invariably reappeared and grew progressively in all animals. The lack of a curative response suggests that TRAMP-C1 tumors may inhibit the development of a flt3-L-induced anti-tumor immune response. Consistent with this view, we demonstrate herein that TRAMP-C1 tumors isolated from flt3-L treated animals contained a marked dendritic cell (DC) infiltrate that was temporally correlated with tumor regression. However, tumor-associated DCs, especially in a flt3-L setting, progressively lost MHC class II antigen expression during tumor growth. Treatment with the DC maturation factor trimeric CD40 ligand (CD40-L) either alone or in combination with fl3-L neither prevented loss of DC class II antigens nor disease relapse. Because loss of class II antigens would prevent CD4+ helper T (Th) cell development, we treated tumor-bearing mice with agonistic anti-4-1BB antibody (Ab), which can promote cytotoxic T lymphocyte (CTL) development independent of Th cell function. However, anti-4-1BB Ab alone did not alter TRAMP-C1 growth kinetics, and, when used in combination, was no more effective than flt3-L alone. The inability of the 4-1BB co-stimulatory signal to promote tumor regression may have been related to two additional features of TRAMP-C1 tumors. First, tumor-associated T cells, but not splenic T cells from tumor-bearing animals, were profoundly deficient in expression of CD3-epsilon (CD3) and T cell receptor-beta chain (TCR). Second, CTLs required 24 h to efficiently kill TRAMP-C1 target cells even after up-regulation of MHC class I antigens by interferon-. This rate of tumor cell destruction by CTLs may not be sufficient to prevent tumor progression. Taken together, these data reveal several important immunosuppressive characteristics of the prostate tumor microenvironment (TME) that immunotherapeutic interventions must first overcome to achieve long-term cures. These data also highlight the importance of utilizing treatment versus vaccination models in the evaluation of immunotherapeutic modalities.  相似文献   

5.
Polarization of an immune response toward tolerance or immunity is dictated by the interactions between T cells and dendritic cells (DC), which in turn are modulated by the expression of distinct cell surface molecules, and the cytokine milieu in which these interactions are taking place. Genetic modification of DC with genes coding for specific immunoregulatory cell surface molecules and cytokines offers the potential of inhibiting immune responses by selectively targeting Ag-specific T cells. In this study, the immunomodulatory effects of transfecting murine bone marrow-derived DC with Fas ligand (FasL) were investigated. In this study, we show that FasL transfection of DC markedly augmented their capacity to induce apoptosis of Fas+ cells. FasL-transfected DC inhibited allogeneic MLR in vitro, and induced hyporesponsiveness to alloantigen in vivo. The induction of hyporesponsiveness was Ag specific and was dependent on the interaction between FasL on DC and Fas on T cells. Finally, we show that transfusion of FasL-DC significantly prolonged the survival of fully MHC-mismatched vascularized cardiac allografts. Our findings suggest that DC transduced with FasL may facilitate the development of Ag-specific unresponsiveness for the prevention of organ rejection. Moreover, they highlight the potential of genetically engineering DC to express other genes that affect immune responses.  相似文献   

6.
Dendritic cells (DCs) are potent antigen presenting cells reported to undergo irreversible functional 'maturation' in response to inflammatory signals such as TNF-alpha. The current paradigm holds that this DC maturation event is required for full functional capacity and represents terminal differentiation of this cell type, culminating in apoptotic cell death. This provides a possible mechanism for avoiding dysregulated immunostimulatory activity, but imposes constraints on the capacity of DCs to influence subsequent immune responses and to participate in immunological memory. We report that the cell surface and functional effects induced by TNF-alpha are reversible and reinducible. These effects are accompanied by a concordant modulation of cytokine mRNA expression that includes the induction of proinflammatory factors (IL-15, IL-12, LT-alpha, LT-beta, TNF-alpha, RANTES) which is coincident with the down-regulation of counter-regulatory cytokines (IL-10, TGF-beta1, TGF-beta2, IL-1 RA, MCP-1). The resultant net effect is a dendritic cell activation state characterized by a transient proinflammatory posture. These results demonstrate that 1) human DCs do not undergo terminal 'maturation' in response to TNF-alpha, 2) DC phenotypes are more pleiotropic than previously thought, and 3) DCs are potential immunoregulatory effector cells with implications for control of immune responses in both in vivo and in vitro systems.  相似文献   

7.

Background

Subclinical endotoxemia has been reported in HIV-1 infected persons and may drive systemic immune activation and pathogenesis. Proinflammatory responsiveness to endotoxin (LPS) is mediated by Toll-like receptor 4 (TLR4). We therefore examined the association between plasma LPS levels, HIV RNA, and TLR4 expression and cytokine responses in the blood of HIV infected and uninfected participants in a cohort of female sex-workers in Kenya.

Methodology/Principal Findings

Ex vivo plasma and peripheral blood mononuclear cells (PBMC) were assessed for LPS and TLR mRNA, respectively. The effects of HIV single stranded RNA, a TLR8 ligand, on TLR4 and LPS signaling were further assessed in short term PBMC culture. Both HIV uninfected and infected subjects frequently had low detectable LPS levels in their plasmas. Significantly increased LPS levels were associated with chronic HIV-1 infection, both treated and untreated, but not with other acute or semi-chronic conditions reported. In HIV-uninfected subjects, TLR4 mRNA expression levels correlated inversely with plasma LPS levels, suggesting chronic endotoxin ‘tolerance’ in vivo. A similar effect of reduced TLR4 mRNA was seen in short term PBMC culture after stimulation with LPS. Interestingly, the apparent in vivo tolerance effect was diminished in subjects with HIV infection. Additionally, pre-stimulation of PBMC with LPS lead to proinflammatory (TNF-α) tolerance to subsequent LPS stimulation; however, pre-treatment of PBMC with HIV single-stranded RNA40, could enhance TLR4-mediated LPS responsiveness in vitro.

Conclusions/Significance

Thus, dysregulation of endotoxin tolerance by HIV-1 RNA may exacerbate HIV chronic immune activation and pathogenesis.  相似文献   

8.
Here we show that transplantation of autologous human hematopoietic fetal liver CD34+ cells into NOD/SCID mice previously implanted with human fetal thymic and liver tissues results in long-term, systemic human T-cell homeostasis. In addition, these mice show systemic repopulation with human B cells, monocytes and macrophages, and dendritic cells (DCs). T cells in these mice generate human major histocompatibility complex class I- and class II-restricted adaptive immune responses to Epstein-Barr virus (EBV) infection and are activated by human DCs to mount a potent T-cell immune response to superantigens. Administration of the superantigen toxic shock syndrome toxin 1 (TSST-1) results in the specific systemic expansion of human Vbeta2+ T cells, release of human proinflammatory cytokines and localized, specific activation and maturation of human CD11c+ dendritic cells. This represents the first demonstration of long-term systemic human T-cell reconstitution in vivo allowing for the manifestation of the differential response by human DCs to TSST-1.  相似文献   

9.
Heat shock protein 70 (Hsp70) has gained a lot of attention in the past decade due to its potential immunoregulatory functions. Some of the described proinflammatory functions of Hsp70 became controversial as they were based on recombinant Hsp70 proteins specimens, which were later shown to be endotoxin-contaminated. In this study we used low endotoxin inducible Hsp70 (also known as Hsp72, HSPA1A), and we observed that after a 24-h incubation of monocyte-derived immature dendritic cells (mo-iDCs) with 20 μg/ml of low endotoxin Hsp70, their ability to stimulate allogenic T cells was reduced. Interestingly, low endotoxin Hsp70 also significantly reduced T cell responses when they were simulated with either IL-2 or phytohemagglutinin, therefore showing that Hsp70 could alter T cell responses independently from its effect on mo-iDCs. We also reported a greater response of Hsp70 treatment when activated versus nonactivated T cells were used. This effect of Hsp70 was similar for all tested populations of T cells that included CD3(+), CD4(+), or CD8(+). Taken together, our observations strongly suggest that Hsp70 might dampen, rather than provoke, T cell-mediated inflammatory reactions in many clinical conditions where up-regulation of Hsp70 is observed.  相似文献   

10.
11.
One essential immunoregulatory function of heat shock protein (HSP) is activation of the innate immune system. We investigated the activation of human monocytes and monocyte-derived dendritic cells (DC) by recombinant human HSP60, human inducible HSP72, and preparations of human gp96 and HSP70 under stringent conditions, in the absence of serum and with highly purified monocytes. HSP60 induced human DC maturation and activated human DC to secrete proinflammatory cytokines. HSP72 induced DC maturation to a lesser extent, but activated human monocytes and immature DC as efficiently as HSP60 to release proinflammatory cytokines. The independence of the effects of HSP60 and HSP72 from endotoxin or another copurifying bacterial component was shown by the resistance of these effects to polymyxin B, their sensitivity to heat treatment, the inactivity of endotoxin controls at concentrations up to 100-fold above the endotoxin contents of the HSP, and the inactivity of a recombinant control protein. Preparations of HSP70, which consisted mainly of the constitutively expressed HSP73, induced only marginal cytokine release from monocytes. The gp96 preparations did not have significant effects on human monocytes and monocyte-derived DC, indicating that these human APC populations were not susceptible to gp96 signaling under the stringent conditions applied in this study. The biological activities of gp96 and HSP70 preparations were confirmed by their peptide binding activity. These findings show that HSP can differ considerably in the capacity to activate monocyte-derived APC under certain conditions and underline the potential of HSP60 and HSP72 as activation signals for the innate immune system.  相似文献   

12.
Although tumor progression involves processes such as tissue invasion that can activate inflammatory responses, the immune system largely ignores or tolerates disseminated cancers. The mechanisms that block initiation of immune responses during cancer development are poorly understood. We report here that constitutive activation of Stat-3, a common oncogenic signaling pathway, suppresses tumor expression of proinflammatory mediators. Blocking Stat-3 in tumor cells increases expression of proinflammatory cytokines and chemokines that activate innate immunity and dendritic cells, leading to tumor-specific T-cell responses. In addition, constitutive Stat-3 activity induces production of pleiotropic factors that inhibit dendritic cell functional maturation. Tumor-derived factors inhibit dendritic cell maturation through Stat-3 activation in progenitor cells. Thus, inhibition of antitumor immunity involves a cascade of Stat-3 activation propagating from tumor to dendritic cells. We propose that tumor Stat-3 activity can mediate immune evasion by blocking both the production and sensing of inflammatory signals by multiple components of the immune system.  相似文献   

13.
Exosomes是多种细胞经晚期内体形成的一种膜性小囊泡。最初认为其功能仅为降解内吞物质,但研究发现exosomes的特异功能与其来源细胞相关,尤其是抗原提呈细胞(APCs)——树突状细胞来源的exosomes(dendritic cell-derived exosomes,DEXs)集MHC-I/MHC-II、共刺激分子、黏附分子、热休克蛋白于一身,在体内外免疫调节中起非常重要的作用。现对DEXs诱导抗肿瘤免疫应答和诱导免疫耐受两方面的功能及可能的免疫调节机制进行综述。  相似文献   

14.
The mucosal immune system is uniquely equipped to discriminate between potentially invasive pathogens and innocuous food proteins. While the mechanisms responsible for induction of mucosal immunity vs tolerance are not yet fully delineated, recent studies have highlighted mucosal dendritic cells (DC) as being important in determining the fate of orally administered Ag. To further investigate the DC:T cell signals involved in regulating the homeostatic balance between mucosal immunity and tolerance, we have examined the expression and function of the TNFR family member receptor activator of NF-kappaB (RANK) and its cognate ligand, RANKL, in vitro and in vivo. Our data show that although DC isolated from mucosal lymphoid tissues expressed similar levels of surface RANK compared with DC isolated from peripheral lymphoid tissues, DC from the distinct anatomical sites displayed differential responsiveness to RANK engagement with soluble RANKL. Whereas splenic DC responded to RANKL stimulation with elevated IL-12 p40 mRNA expression, Peyer's patch DC instead preferentially displayed increased IL-10 mRNA expression. Our data also show that the in vivo functional capacity of mucosal DC can be modulated by RANKL. Treatment with RANKL in vivo at the time of oral administration of soluble OVA enhanced the induction of tolerance in two different mouse models. These studies underscore the functional differences between mucosal and peripheral DC and highlight a novel role for RANK/RANKL interactions during the induction of mucosal immune responses.  相似文献   

15.
16.
内毒素是革兰阴性菌细胞壁的成分,能够激发机体的免疫反应。当细菌释放大量的内毒素到血液,即可引起内毒素血症,内毒素血症可以伴随多种疾病出现,引起致死性感染性休克,循环功能衰竭,其病死率极高。内毒素耐受是指机体接受小剂量内毒素刺激后对后续内毒素刺激的反应性降低,表现为促炎因子释放减少而抗炎因子释放增加,机体发热,缺氧,低血压,休克的症状减轻。内毒素耐受的发生机制极其复杂,受机体内多种因素的调节,但目前尚无明确的结论。近年来,有关其机制的研究有许多报道,其中,对内毒素耐受的信号机制的研究最为广泛,大量的研究表明内毒素的主要受体,细胞内的信号蛋白,负调控因子以及转录因子可能在内毒素耐受的发生过程中起重要作用。也有报道表明免疫细胞的凋亡,染色体修饰和基因重排以及小RNA的参与可能诱导内毒素耐受的发生。本文从细胞、分子水平对内毒素耐受的发生机制进行综述,拟对炎症性疾病如内毒素血症的预防和治疗提供理论依据。  相似文献   

17.
To delineate factors involved in NK cell development, we established an in vitro system in which lineage marker (Lin)-, c-kit+, Sca2+ bone marrow cells differentiate into lytic NK1.1+ but Ly49- cells upon culture in IL-7, stem cell factor (SCF), and flt3 ligand (flt3L), followed by IL-15 alone. A comparison of the ability of IL-7, SCF, and flt3L to generate IL-15-responsive precursors suggested that NK progenitors express the receptor for flt3L. In support of this, when Lin-, c-kit+, flt3+ or Lin-, c-kit+, flt3- progenitors were utilized, 3-fold more NK cells arose from the flt3+ than from the flt3- progenitors. Furthermore, NK cells that arose from flt3- progenitors showed an immature NK1.1dim, CD2-, c-kit+ phenotype as compared with the more mature NK1.1bright, CD2+/-, c-kit- phenotype displayed by NK cells derived from flt3+ progenitors. Both progenitors, however, gave rise to NK cells that were Ly49 negative. To test the hypothesis that additional marrow-derived signals are necessary for Ly49 expression on developing NK cells, flt3+ progenitors were grown in IL-7, SCF, and flt3L followed by culture with IL-15 and a marrow-derived stromal cell line. Expression of Ly49 molecules, including those of which the MHC class I ligands were expressed on the stromal or progenitor cells, as well as others of which the known ligands were absent, was induced within 6-13 days. Thus, we have established an in vitro system in which Ly49 expression on developing NK cells can be analyzed and possibly experimentally manipulated.  相似文献   

18.
Endotoxin tolerance (ET) represents a state of an altered immune response induced by multiple stimulations of a cell, a tissue, or an organism with lipopolysaccharide. Characteristics of ET include downregulation of induction of proinflammatory genes (TNFα, IL6, and others) and enhancement of induction of antiinflammatory genes (IL10, TGFβ). ET generally has protective functions; nevertheless, it might result in a state of innate immune deficiency and cause negative outcomes. A current issue is the search for the mechanisms controlling the level of inflammation in the course of endotoxin tolerance. In this work, we investigated the change in cyclooxygenase 2 (Cox2) expression in the model of endotoxin tolerance in astrocytes and analyzed the possibility of regulating this process applying nuclear receptor PPAR agonists. Our results indicate that: 1) endotoxin tolerance can be induced in astrocytes and results in TNFα and Cox2 mRNA induction decrease upon secondary stimulation; 2) tolerance is revealed on the level of TNFα release and Cox2 protein expression; 3) PPAR agonists GW7647, L-165041, and rosiglitazone control Cox2 mRNA expression levels under conditions of endotoxin tolerance. In particular, rosiglitazone (a PPARγ agonist) induces Cox2 mRNA expression, while GW7647 (a PPARα agonist) and L-165041 (a PPARβ agonist) suppress the expression. Our results demonstrate that Cox2 can be upand downregulated during endotoxin tolerance in astrocytes, and PPAR agonists might be effective for controlling this target under conditions of multiple proinflammatory stimulations of brain tissues with endotoxin.  相似文献   

19.
Systemic lupus erythematosus is an autoimmune disease characterized by autoantibodies and systemic inflammation that results in part from dendritic cell activation by nucleic acid containing immune complexes. There are many mouse models of lupus, some spontaneous and some induced. We have been interested in an induced model in which estrogen is the trigger for development of a lupus-like serology. The R4A transgenic mouse expresses a transgene-encoded H chain of an anti-DNA Ab. This mouse maintains normal B cell tolerance with deletion of high-affinity DNA-reactive B cells and maturation to immunocompetence of B cells making nonglomerulotropic, low-affinity DNA-reactive Abs. When this mouse is given estradiol, normal tolerance mechanisms are altered; high-affinity DNA-reactive B cells mature to a marginal zone phenotype, and the mice are induced to make high titers of anti-DNA Abs. We now show that estradiol administration also leads to systemic inflammation with increased B cell-activating factor and IFN levels and induction of an IFN signature. DNA must be accessible to B cells for both the production of high-affinity anti-DNA Abs and the generation of the proinflammatory milieu. When DNase is delivered to the mice at the same time as estradiol, there is no evidence for an abrogation of tolerance, no increased B cell-activating factor and IFN, and no IFN signature. Thus, the presence of autoantigen is required for positive selection of autoreactive B cells and for the subsequent positive feedback loop that occurs secondary to dendritic cell activation by DNA-containing immune complexes.  相似文献   

20.
Va14Ja18 natural T (iNKT) cells are innate, immunoregulatory lymphocytes that recognize CD1d-restricted lipid Ags such as alpha-galactosylceramide (alpha GalCer). The immunoregulatory functions of iNKT cells are dependent upon either IFN-gamma or IL-4 production by these cells. We hypothesized that alpha GalCer presentation by different CD1d-positive cell types elicits distinct iNKT cell functions. In this study we report that dendritic cells (DC) play a critical role in alpha GalCer-mediated activation of iNKT cells and subsequent transactivation of NK cells. Remarkably, B lymphocytes suppress DC-mediated iNKT and NK cell activation. Nevertheless, alpha GalCer presentation by B cells elicits low IL-4 responses from iNKT cells. This finding is particularly interesting because we demonstrate that NOD DC are defective in eliciting iNKT cell function, but their B cells preferentially activate this T cell subset to secrete low levels of IL-4. Thus, the differential immune outcome based on the type of APC that displays glycolipid Ags in vivo has implications for the design of therapies that harness the immunoregulatory functions of iNKT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号