首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reptile phylogeny and the interrelationships of turtles   总被引:9,自引:0,他引:9  
A comprehensive analysis of amniote interrelationships is presented in an attempt to test turtle interrelationships. The results refute earlier hypotheses that turtles are related to parareptiles, i.e. to procolophonids or pareiasaurs. Instead, turtles are shown to be the sister-group of Sauropterygia, the two clades being nested within Sauria as sister-group of Lepidosauriformes. This scenario is also supported by several developmental and soft tissue characters which are shown to be congruent with the current phylogeny. The analysis strongly supports a monophyletic Parareptilia, sister-group of a monophylctic Eurcptilia. The Diapsida, however, is paraphyletic unless it includes turtles and sauropterygians. Additionally, the position of turtles within Diapsida has major implications for the evolutionary history and/or significance of many characters, i.e. temporal fenestration.  相似文献   

2.
Hill RV 《Systematic biology》2005,54(4):530-547
Several mutually exclusive hypotheses have been advanced to explain the phylogenetic position of turtles among amniotes. Traditional morphology-based analyses place turtles among extinct anapsids (reptiles with a solid skull roof), whereas more recent studies of both morphological and molecular data support an origin of turtles from within Diapsida (reptiles with a doubly fenestrated skull roof). Evaluation of these conflicting hypotheses has been hampered by nonoverlapping taxonomic samples and the exclusion of significant taxa from published analyses. Furthermore, although data from soft tissues and anatomical systems such as the integument may be particularly relevant to this problem, they are often excluded from large-scale analyses of morphological systematics. Here, conflicting hypotheses of turtle relationships are tested by (1) combining published data into a supermatrix of morphological characters to address issues of character conflict and missing data; (2) increasing taxonomic sampling by more than doubling the number of operational taxonomic units to test internal relationships within suprageneric ingroup taxa; and (3) increasing character sampling by approximately 25% by adding new data on the osteology and histology of the integument, an anatomical system that has been historically underrepresented in morphological systematics. The morphological data set assembled here represents the largest yet compiled for Amniota. Reevaluation of character data from prior studies of amniote phylogeny favors the hypothesis that turtles indeed have diapsid affinities. Addition of new ingroup taxa alone leads to a decrease in overall phylogenetic resolution, indicating that existing characters used for amniote phylogeny are insufficient to explain the evolution of more highly nested taxa. Incorporation of new data from the soft and osseous components of the integument, however, helps resolve relationships among both basal and highly nested amniote taxa. Analysis of a data set compiled from published sources and data original to this study supports monophyly of Amniota, Synapsida, Reptilia, Parareptilia, Eureptilia, Eosuchia, Diapsida, Neodiapsida, Sauria, Lepidosauria, and Archosauriformes, as well as several more highly nested divisions within the latter two clades. Turtles are here resolved as the sister taxon to a monophyletic Lepidosauria (squamates + Sphenodon), a novel phylogenetic position that nevertheless is consistent with recent molecular and morphological studies that have hypothesized diapsid affinities for this clade.  相似文献   

3.
The origin and early evolution of amniotes (fully terrestrial vertebrates) led to major changes in the structure and hierarchy of terrestrial ecosystems. The first appearance of herbivores played a pivotal role in this transformation. After an early bifurcation into Reptilia and Synapsida (including mammals) 315 Ma, synapsids dominated Paleozoic terrestrial vertebrate communities, with the herbivorous caseids representing the largest vertebrates on land. Eocasea martini gen. et sp. nov., a small carnivorous caseid from the Late Carboniferous, extends significantly the fossil record of Caseidae, and permits the first clade-based study of the origin and initial evolution of herbivory in terrestrial tetrapods. Our results demonstrate for the first time that large caseid herbivores evolved from small, non-herbivorous caseids. This pattern is mirrored by three other clades, documenting multiple, independent, but temporally staggered origins of herbivory and increase in body size among early terrestrial tetrapods, leading to patterns consistent with modern terrestrial ecosystem.  相似文献   

4.
Tetrapod classification   总被引:2,自引:0,他引:2  
The traditional palaeontological view that the mammals separated from the 'reptiles' before the origin of all other living amniotes is challenged. A radical alternative hypothesis, based on a character analysis of living tetrapods, is elaborated in which birds are considered the sister-group of mammals, crocodiles the sister-group of those two, chelonians the sister-group of those three, and squamates + Sphenodon the sister-group of those four. The living Amphibia are hypothesized to form a natural group and to be the sister-group of the Amniota. Further, I conclude that the Anapsida, Diapsida and Synapsida are paraphyletic or grade groups and no unique statements can be made about their structure.  相似文献   

5.
中国爬行纲动物分类厘定   总被引:2,自引:0,他引:2  
本文对中国爬行纲动物的分类体系和物种进行了系统的评估, 规范了中文学名, 给出了《中国爬行纲校正名录》, 结果表明: 中国现存爬行纲动物3目30科132属462种, 其中鳄形目(Crocodylia)1科1属1种, 龟鳖目(Testudines)6科18属33种, 有鳞目(Squamata)蜥蜴亚目(Lacertilia)10科41属189种, 有鳞目蛇亚目(Serpentes)13科72属239种。与《中国动物志 爬行纲 第一卷(总论、龟鳖目、鳄形目)》、《中国动物志 爬行纲 第二卷(有鳞目: 蜥蜴亚目)》和《中国蛇类》相比, 目和亚目无变化; 科级水平新增5科, 变更2科; 属级水平新增23属, 合并15属, 变更6属; 种级水平新增81种, 变动2种; 未收录同物异名12种、杂交6种、中国无分布7种。形态和分子系统发育研究结果在爬行动物不同分类阶元均有一定差异, 文章对这些争议进行了讨论, 并对名录的选择做了说明。  相似文献   

6.
7.
Morphological and molecular studies have inferred multiple hypotheses for the phylogenetic relationships of Testudines. The hypothesis that Testudines are the only extant anapsid amniotes and the sister taxon of diapsid amniotes is corroborated by morphological studies, while the hypothesis that Testudines are diapsid amniotes is corroborated by more recent molecular and morphological studies. In this study, the placement of Testudines is tested using the full length cDNA sequence of the polypeptide hormone precursor proopiomelanocortin (POMC). Because only extant taxa have been used, the hypotheses being tested are limited to the following (1) Testudines as the sister taxon of Archosauria, (2) Testudines included in Archosauria and the sister taxon of Crocodilia, (3) Testudines as the sister taxon of Lepidosauria, (4) Testudines as the sister taxon of Sauria, and (5) Testudines as the sister taxon of a monophyletic Mammalia–Sauria clade. Neither Maximum likelihood, Bayesian, or maximum parsimony analyses are able to falsify the hypothesis of (Archosauria (Lepidosauria, Testudines)) and as such is the preferred inference from the POMC data.  相似文献   

8.
Allometric relationships linking species characteristics to body size or mass (scaling) are important in biology. However, studies on the scaling of life history traits in the reptiles (the nonavian Reptilia) are rather scarce, especially for the clades Crocodilia, Testudines, and Rhynchocephalia (single extant species, the tuatara). Previous studies on the scaling of reptilian life history traits indicated that they differ from those seen in the other amniotes (mammals and birds), but so far most comparative studies used small species samples and also not phylogenetically informed analyses. Here, we analyzed the scaling of nine life history traits with adult body mass for crocodiles (= 22), squamates (= 294), turtles (= 52), and reptiles (= 369). We used for the first time a phylogenetically informed approach for crocodiles, turtles, and the whole group of reptiles. We explored differences in scaling relationships between the reptilian clades Crocodilia, Squamata, and Testudines as well as differences between reptiles, mammals, and birds. Finally, we applied our scaling relationships, in order to gain new insights into the degree of the exceptionality of the tuatara's life history within reptiles. We observed for none of the life history traits studied any difference in their scaling with body mass between squamates, crocodiles, and turtles, except for clutch size and egg weight showing small differences between these groups. Compared to birds and mammals, scaling relationships of reptiles were similar for time‐related traits, but they differed for reproductive traits. The tuatara's life history is more similar to that of a similar‐sized turtle or crocodile than to a squamate.  相似文献   

9.
All previous records of fossil Anthomyiidae are shown to be unsubstantiated. A female anthomyiid of a new genus and species is hereby described from a piece of Dominican amber (Upper Eocene-Oligocene). Character analysis suggests that the fossil, Coenosopsites poinari gen. & sp. nov. , belongs to a Neotropical clade with two recent genera, Phaonantho Albuquerque and Coenosopsia Malloch. Evidence for a sister-group relationship between Coenosopsites poinari and the genus Coenosopsia is provided. Clades are the only acceptable units of phylogenetic classification. Combining fossil and recent clades in phylogenetic classification requires them to be temporally delimited. Proper application of phylogenetic definitions is essential for this purpose. It is proposed that the units of phylogenetic classification should be taxa for recent clades and plesia for fossil clades. A taxon is defined as node-based with reference to its recent species, while a plesion is defined as apomorphy-based. The term lineage is proposed for a recent clade defined as stem-based with reference to its recent sister group. Individual recent species represent clades that can be incorporated into phylogenetic classification as minimal taxon units. Individual fossil species may not represent clades and thus do not count as proper units of phylogenetic classification. However, the names of fossil species are readily construed also to signify plesia with the fossil species as their only known component. As such, they are proper units of phylogenetic classification.  相似文献   

10.
11.
Abstract. A new subfamily of Stratiomyidae is proposed for Parhadrestia James and Cretaceogaster Teskey (fossil from Upper Cretaceous Canadian amber). Evidence is delimited that indicates that this subfamily is the sister-group to all other known stratiomyids. Taxa in the subfamily are systematically described, including a new species, Parhadrestia curico , from Chile.  相似文献   

12.
Squamate phylogeny and the relationships of snakes and mosasauroids   总被引:1,自引:0,他引:1  
Cladistic analysis of extant and fossil squamates (95 characters, 26 taxa) finds the fossil squamate, Coniasaurus Owen, 1850, to be the sister-group of the Mosasauroidea (mosasaurs and aigialosaurs). This clade is supported in all 18 shortest cladograms (464 steps; CI 0.677; HI 0.772) by nine characters of the dermatocranium, maxilla, and mandible. A Strict Consensus Tree of the 18 shortest trees collapses to a basal polytomy for most major squamate clades including the clade (Coniasaurus, Mosasauroidea). A Majority Rule Consensus Tree shows that, in 12 of 18 shortest cladograms, the clade Coniasaurus- Mosasauroidea is the sister-group to snakes (Scolecophidia (Alethinophidia, Dinilysia); this entire clade, referred to as the Pythonomorpha ([[Scolecophidia [Alethinophidia, Dinilysia]], [Coniasaurus, Mosasauroidea]]) is the sister-group to all other scleroglossans. Pythonomorpha is supported in these 12 cladograms by nine characters related to the lower jaw and cranial kinesis. In 6 of 18 shortest cladograms, snakes are the sister-group to the clade (Amphisbaenia (Dibamidae (Gekkonoidea, Eublepharidae))). None of the cladograms support the hypothesis that coniasaurs and mosasauroids are derived varanoid anguimorphs. Two additional analyses were conducted: (1) manipulation and movement of problematic squamate clades while constraining ‘accepted’ relationships; (2) additional cladistic analyses beginning with extant taxa, and sequentially adding fossil taxa. From Test I, at 467 steps, Pythonomorpha can be the sister-group to the Anguimorpha, Scincomorpha, ‘scinco-gekkonomorpha’ [scincomorphs, gekkotans, and amphibaenids-dibamids]. At 471 steps Pythonomorpha can be placed within Varanoidea. Treating only mosasauroids and coniasaurs as a monophyletic group: 469 steps, mosasauroids and coniasaurs as sister-group to Anguimorpha; 479 steps, mosasauroids and coniasaurs nested within Varanoidea. Test II finds snakes to nest within Anguimorpha in a data set of only Mosasauroidea + Extant Squamates; the sistergroup to snakes + anugimorphs is (Amphisbaenia (Dibarnidae (Gekkonoidea, Eublepharidae))). No one particular taxon is identified as a keystone taxon in this analysis, though it appears truc that fossil taxa significantly alter the structure of squamate phylogenetic trees.  相似文献   

13.
Given that most species that have ever existed on Earth are extinct, no evolutionary history can ever be complete without the inclusion of fossil taxa. Bovids (antelopes and relatives) are one of the most diverse clades of large mammals alive today, with over a hundred living species and hundreds of documented fossil species. With the advent of molecular phylogenetics, major advances have been made in the phylogeny of this clade; however, there has been little attempt to integrate the fossil record into the developing phylogenetic picture. We here describe a new large fossil caprin species from ca. 1.9-Ma deposits from the Middle Awash, Ethiopia. To place the new species phylogenetically, we perform a Bayesian analysis of a combined molecular (cytochrome b) and morphological (osteological) character supermatrix. We include all living species of Caprini, the new fossil species, a fossil takin from the Pliocene of Ethiopia (Budorcas churcheri), and the insular subfossil Myotragus balearicus. The combined analysis demonstrates successful incorporation of both living and fossil species within a single phylogeny based on both molecular and morphological evidence. Analysis of the combined supermatrix produces superior resolution than with either the molecular or morphological data sets considered alone. Parsimony and Bayesian analyses of the data set are also compared and shown to produce similar results. The combined phylogenetic analysis indicates that the new fossil species is nested within Capra, making it one of the earliest representatives of this clade, with implications for molecular clock calibration. Geographical optimization indicates no less than four independent dispersals into Africa by caprins since the Pliocene.  相似文献   

14.
The interrelationships within the clade comprised of turtles, pareiasaurs, and procolophonid-like taxa are investigated via a cladistic analysis incorporating 56 characters. A single most parsimonious tree was found (80 steps, c. i. = 0·8) in which the successive outgroups to turtles are: pareiasaurs, Sclerosaurus, lanthanosuchids, procolophonoids (=Owenetta, Barasaurus and procolophonids), and nyctiphruretians (= nycteroleterids). Thus, as suggested recently by other workers (Reisz, in Fischman, 1993) turtles are the highly modified survivors of a radiation of poorly-known reptiles commonly called ‘parareptiles’. Pareiasaurs are united with turtles on the basis of twenty unambiguous derived features which are absent in other basal amniotes (=‘primitive reptiles’) and reptiliomorph amphibians: for example, the medially located choana, enlarged foramina palatinum posterius, blunt cultriform process, fully ossified medial wall of the prootic, opisthotic-squamosal suture, lateral flange of exoccipital, loss of ventral cranial fissure, thickened braincase floor, ‘pleurosphenoid’ ossification, reduced presacral count, acromion process, trochanter major, reduced fifth pedal digit, and presence of transverse processes on most caudals. Recent phylogenetic proposals linking turtles with captorhinids, with dicynodonts, and with procolophonoids are evaluated. None of the proposed traits supporting the first two hypotheses is compelling. The procolophonoid hypotheses is supported by only one synapomorphy (the slender stapes). All other synapomorphies proposed in favour of the above groupings either occur in many other primitive amniotes, or are not primitive for turtles, or are not primitive for the proposed chelonian sister-group. Nyctiphruretus and Lanthanosuchids and nycteroleterids, often considered to be seymouriamorph amphibians, are demonstrated unequivocally to be amniotes. The ‘rhipaeosaurs’, currently considered to be pareiasaur relatives, are shown to be a heterogenous assemblage of seymouriamorphs, therapsids and nycteroleterids. The phylogeny proposed here indicates that many of the traits of the earliest known turtle, Proganochelys, previously interpreted as unique specialisations, also occur in pareiasaurs and other near outgroups of turtles, and must instead represent the primitive chelonian condition: for example, the wide parietals and the short quadrate flange of the pterygoid. The sequence of acquisition of chelonian traits is discussed: many features once thought to be diagnostic of turtles actually characterize larger groupings of procolophonomorphs, and must have evolved long before the chelonian shell appeared. These traits include most of the chelonian-pareiasaur synapomorphies listed above, and many others which characterize more inclusive groupings found in this analysis. In putting Proganochelys much closer to the main line of chelonian evolution, in elucidating the sequence of acquisition of chelonian traits, and in reducing greatly the number of differences between turtles and their nearest relatives, this study helps bridge one of the major gaps in the fossil record. The failure of previous cladistic analyses to identify correctly the nearest relatives of turtles is attributed to biased character selection, caused by an over-reliance on cranial characters deemed ‘important’ by earlier workers, and by a tendency to shoehorn ‘parareptile’ taxa into phylogenies derived from analyses restricted to ‘mainstream’ groups such as synapsids, diapsids, turtles, and ‘captorhinomorphs’. Many of the synapomorphies that resolve turtle origins are postcranial, and the three nearest outgroups to turtles are all highly bizarre groups which were dismissed as ‘too specialized’ by early workers and continued to be inadequately assessed even by workers using a cladistic framework.  相似文献   

15.
Here, I present a review and synthesis of fossil and neontological evidence to find major trends in the pre-Cenozoic evolution of animal acoustic behaviour. Anatomical, ecological and phylogenetic data support the following scenario. Stridulating insects, including crickets, performed the first terrestrial twilight choruses during the Triassic. The twilight chorus was joined by water boatmen in the Lower Jurassic, anurans in the Upper Jurassic, geckoes and birds in the Lower Cretaceous, and cicadas and crocodilians in the Upper Cretaceous. Parallel evolution of defensive stridulation took place multiple times within Malacostraca, Arachnida and Coleoptera. Parallel evolution of defensive and courtship-related sound production took place in Actinopterygii, possibly as early as the Devonian. Defensive vocalisations by tetrapods probably did not appear until their predators acquired tympanic ears in the Permian. Tympanic ears appeared independently in Diadectomorpha, Seymouriamorpha, Parareptilia, Diapsida and derived Synapsida. Crocodilians and birds acquired vocal organs independently, and there is no anatomical evidence for vocal ability in bird-line archosaurs basal to the avian clade Ornithothoraces. Acoustic displays by non-avian dinosaurs were therefore probably non-vocal. Other aspects of the evolution of acoustic behaviour in these and other lineages are also discussed.  相似文献   

16.
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a “semi-erect” (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the “sprawling-to-erect” transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.  相似文献   

17.
Methods improving the performance of molecular dating of divergence time of clades have improved dramatically in recent years. The calibration of molecular dating using the first appearance of a clade in the fossil record is a crucial step towards inferring the minimal diversification time of various groups and the choice of extinct taxa can strongly influence the molecular dates. Here, we evaluate the uncertainty on the phylogenetic position of extinct taxa through non‐parametric bootstrapping. The recognition of phylogenetic uncertainty resulted in the definition of the Bootstrap Uncertainty Range (BUR) for the age of first appearance of a given clade. The BUR is calculated as the interval of geological time in which the diversification of a given clade can be inferred to have occurred, based on the temporal information of the fossil record and the topologies of the bootstrap trees. Divergence times based on BUR analyses were calculated for three clades of turtles: Testudines, Pleurodira and Cryptodira. This resulted in extensive uncertainty ranges of topology‐dependent minimal divergence dates for these clades.  相似文献   

18.
A new time-scale for ray-finned fish evolution   总被引:6,自引:0,他引:6  
The Actinopterygii (ray-finned fishes) is the largest and most diverse vertebrate group, but little is agreed about the timing of its early evolution. Estimates using mitochondrial genomic data suggest that the major actinopterygian clades are much older than divergence dates implied by fossils. Here, the timing of the evolutionary origins of these clades is reinvestigated using morphological, and nuclear and mitochondrial genetic data. Results indicate that existing fossil-based estimates of the age of the crown-group Neopterygii, including the teleosts, Lepisosteus (gar) and Amia (bowfin), are at least 40 Myr too young. We present new palaeontological evidence that the neopterygian crown radiation is a Palaeozoic event, and demonstrate that conflicts between molecular and morphological data for the age of the Neopterygii result, in part, from missing fossil data. Although our molecular data also provide an older age estimate for the teleost crown, this range extension remains unsupported by the fossil evidence. Nuclear data from all relevant clades are used to demonstrate that the actinopterygian whole-genome duplication event is teleost-specific. While the date estimate of this event overlaps the probable range of the teleost stem group, a correlation between the genome duplication and the large-scale pattern of actinopterygian phylogeny remains elusive.  相似文献   

19.
The fossil record has played an important role in the history of evolutionary thought, has aided the determination of key relationships through mosaics, and has allowed an assessment of a number of ecological hypotheses. Nonetheless, expectations that it might accurately and precisely mirror the progression of taxa through time seem optimistic in light of the many factors potentially interfering with uniform preservation. In view of these limitations, attempts to use the fossil record to corroborate phylogenetic hypotheses based on extensive comparisons among extant taxa may be misplaced. Instead we suggest a method-minimum age node mapping-for combining reliable fossil evidence with hypotheses of phylogeny. We use this methodology in conjunction with a phylogeny for angiosperms to assess timing in the history of major angiosperm clades. This method places many clades both with and without fossil records in temporal perspective, reveals discrepancies among clades in propensities for preservation, and raises some interesting questions about angiosperm evolution. By providing a context for understanding the gaps in the angiosperm fossil record this technique lends credibility and support to the remainder of the angiosperm record and to its applications in understanding a variety of aspects of angiosperm history. In effect, this methodology empowers the fossil record.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号