首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自从在原核生物中发现蛋白糖基化之后,越来越多的O-糖基化机制在不同种属的细菌中被发现。本文根据对O-寡糖基转移酶(O-oligosaccharide transferase,OTase)的依赖与否,将原核生物的O-糖基化分为OTase非依赖型和OTase依赖型,并分别对这两种糖基化机制进行了详细阐述。通过对不同的O-糖基化机制的深入了解,为以后更好地利用这些途径来合成工程化的目标糖蛋白奠定基础。  相似文献   

2.
Schäffer C  Messner P 《Biochimie》2001,83(7):591-599
Over the last two decades, a significant change of perception has taken place regarding prokaryotic glycoproteins. For many years, protein glycosylation was assumed to be limited to eukaryotes; but now, a wealth of information on structure, function, biosynthesis and molecular biology of prokaryotic glycoproteins has accumulated, with surface layer (S-layer) glycoproteins being one of the best studied examples. With the designation of Archaea as a second prokaryotic domain of life, the occurrence of glycosylated S-layer proteins had been considered a taxonomic criterion for differentiation between Bacteria and Archaea. Extensive structural investigations, however, have demonstrated that S-layer glycoproteins are present in both domains. Among Gram-positive bacteria, S-layer glycoproteins have been identified only in bacilli. In Gram-negative organisms, their presence is still not fully investigated; presently, there is no indication for their existence in this class of bacteria. Extensive biochemical studies of the S-layer glycoprotein from Halobacterium halobium have, at least in part, unravelled the glycosylation pathway in Archaea; molecular biological analyses of these pathways have not been performed, so far. Significant observations concern the occurrence of unusual linkage regions both in archaeal and bacterial S-layer glycoproteins. Regarding S-layer glycoproteins of bacteria, first genetic data have shed some light into the molecular organization of the glycosylation machinery in this domain. In addition to basic S-layer glycoprotein research, the biotechnological application potential of these molecules has been explored. With the development of straightforward molecular biological methods, fascinating possibilities for the expression of prokaryotic glycoproteins will become available. S-layer glycoprotein research has opened up opportunities for the production of recombinant glycosylation enzymes and tailor-made S-layer glycoproteins in large quantities, which are commercially not yet available. These bacterial systems may provide economic technologies for the production of biotechnologically and medically important glycan structures in the future.  相似文献   

3.
Rather recently it has become clear that prokaryotes (Archaea and Bacteria) are able to glycosylate proteins. A literature survey revealed the different types of glycoproteins. They include mainly surface layer (S-layer) proteins, flagellins, and polysaccharide-degrading enzymes. Only in a few cases is structural information available. Many different structures have been observed that display much more variation than that observed in eukaryotes. A few studies have given evidence for the function of the prokaryotic glycoprotein glycans. Also from the biosynthetic point of view, information is rather scarce. Due to their different cell structure, prokaryotes have to use mechanisms different from those found in eukaryotes to glycosylate proteins. However, from the fragmented data available for the prokaryotic glycoproteins, similarities with the eukaryotic system can be noticed. Received: 24 February 1997 / Accepted: 13 May 1997  相似文献   

4.
In eukaryotes, the combinatorial potential of carbohydrates is used for the modulation of protein function. However, despite the wealth of cell wall and surface-associated carbohydrates and glycoconjugates, the accepted dogma has been that prokaryotes are not able to glycosylate proteins. This has now changed and protein glycosylation in prokaryotes is an accepted fact. Intriguingly, in Gram-negative bacteria most glycoproteins are associated with virulence factors of medically significant pathogens. Also, important steps in pathogenesis have been linked to the glycan substitution of surface proteins, indicating that the glycosylation of bacterial proteins might serve specific functions in infection and pathogenesis and interfere with inflammatory immune responses. Therefore, the carbohydrate modifications and glycosylation pathways of bacterial proteins will become new targets for therapeutic and prophylactic measures. Here we discuss recent findings on the structure, genetics and function of glycoproteins of medically important bacteria and potential applications of bacterial glycosylation systems for the generation of novel glycoconjugates.  相似文献   

5.
JS Chauhan  AH Bhat  GP Raghava  A Rao 《PloS one》2012,7(7):e40155
Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using information on predicted secondary structures and accessible surface area in various combinations with training features. Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71% (MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins confirms the suitability of these models in predicting N- and O-glycosites in potential glycoproteins from aforementioned organisms, with reasonably high confidence. A web server GlycoPP, implementing these models is available freely at http:/www.imtech.res.in/raghava/glycopp/.  相似文献   

6.
In recent years, accumulating evidence for glycosylated bacterial proteins has overthrown an almost dogmatic belief that prokaryotes are not able to synthesize glycoproteins. Now it is widely accepted that eubacteria express glycoproteins. Although, at present, detailed information about glycosylation and structure-function relationships is available for only few eubacterial proteins, the variety of different components and structures observed already indicates that the variations in bacterial glycoproteins seem to exceed the rather limited display found in eukaryotes. Numerous virulence factors of bacterial pathogens have been found to be covalently modified with carbohydrate residues, thereby identifying these factors as true glycoproteins. In several bacterial species, gene clusters suggested to represent a general protein glycosylation system have been identified. In other cases, genes encoding highly specific glycosyltransferases have been found to be directly linked with virulence genes. These findings raise interesting questions concerning a potential role of glycosylation in pathogenesis. In this review, we will therefore focus on protein glycosylation in Gram-negative bacterial pathogens.  相似文献   

7.
Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA) were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB) was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA) staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.  相似文献   

8.
Whereas the importance of calcium as a cell regulator is well established in eukaryotes, the role of calcium in prokaryotes is still elusive. Over the past few years, there has been an increased interest in the role of calcium in bacteria. It has been demonstrated that as in eukaryotic organisms, the intracellular calcium concentration in prokaryotes is tightly regulated ranging from 100 to 300 nM. It has been found that calcium ions are involved in the maintenance of cell structure, motility, transport and cell differentiation processes such as sporulation, heterocyst formation and fruiting body development. In addition, a number of calcium-binding proteins have been isolated in several prokaryotic organisms. The characterization of these proteins and the identification of other factors suggest the possibility that calcium signal transduction exists in bacteria. This review presents recent developments of calcium in bacteria as it relates to signal transduction.  相似文献   

9.
Jun SH  Kim TG  Ban C 《The FEBS journal》2006,273(8):1609-1619
The molecular mechanisms of the DNA mismatch repair (MMR) system have been uncovered over the last decade, especially in prokaryotes. The results obtained for prokaryotic MMR proteins have provided a framework for the study of the MMR system in eukaryotic organisms, such as yeast, mouse and human, because the functions of MMR proteins have been conserved during evolution from bacteria to humans. However, mutations in eukaryotic MMR genes result in pleiotropic phenotypes in addition to MMR defects, suggesting that eukaryotic MMR proteins have evolved to gain more diverse and specific roles in multicellular organisms. Here, we summarize recent advances in the understanding of both prokaryotic and eukaryotic MMR systems and describe various new functions of MMR proteins that have been intensively researched during the last few years, including DNA damage surveillance and diversification of antibodies.  相似文献   

10.
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.  相似文献   

11.
12.
Post-translational glycosylation is a universal modification of proteins in eukarya, archaea and bacteria. Two recent publications describe the first confirmed report of a bacterial N-linked glycosylation pathway in the human gastrointestinal pathogen Campylobacter jejuni. In addition, an O-linked glycosylation pathway has been identified and characterized in C. jejuni and the related species Campylobacter coli. Both pathways have similarity to the respective N- and O-linked glycosylation processes in eukaryotes. In bacteria, homologues of the genes in both pathways are found in other organisms, the complex glycans linked to the glycoproteins share common biosynthetic precursors and these modifications could play similar biological roles. Thus, Campylobacter provides a unique model system for the elucidation and exploitation of glycoprotein biosynthesis.  相似文献   

13.
Glycosylation of proteins in prokaryotes has been known for the last few decades. Glycan structures and/or the glycosylation pathways have been experimentally characterized in only a small number of prokaryotes. Even this has become possible only during the last decade or so, primarily due to technological and methodological developments. Glycosylated proteins are diverse in their function and localization. Glycosylation has been shown to be associated with a wide range of biological phenomena. Characterization of the various types of glycans and the glycosylation machinery is critical to understand such processes. Such studies can help in the identification of novel targets for designing drugs, diagnostics, and engineering of therapeutic proteins. In view of this, the experimentally characterized pgl system of Campylobacter jejuni, responsible for N-linked glycosylation, has been used in this study to identify glycosylation loci in 865 prokaryotes whose genomes have been completely sequenced. Results from the present study show that only a small number of organisms have homologs for all the pgl enzymes and a few others have homologs for none of the pgl enzymes. Most of the organisms have homologs for only a subset of the pgl enzymes. There is no specific pattern for the presence or absence of pgl homologs vis-à-vis the 16S rRNA sequence-based phylogenetic tree. This may be due to differences in the glycan structures, high sequence divergence, horizontal gene transfer or non-orthologous gene displacement. Overall, the presence of homologs for pgl enzymes in a large number of organisms irrespective of their habitat, pathogenicity, energy generation mechanism, etc., hints towards the ubiquity of N-linked glycosylation in prokaryotes.  相似文献   

14.
15.
The fact that glycosylation is not a significant process in prokaryotes means that many of the proteins produced by genetically engineered bacteria are not identical to their eukaryotic counterparts. Although glycosylation affects the physical, chemical and biological nature of proteins, its pharmacological value in potential protein pharmaceuticals is not easy to predict. However, the development of mammalian cell culture methods for expressing recombinant DNA-derived glycoproteins will permit further studies in the field.  相似文献   

16.
The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.  相似文献   

17.
Protein glycosylation in bacteria: sweeter than ever   总被引:1,自引:0,他引:1  
Investigations into bacterial protein glycosylation continue to progress rapidly. It is now established that bacteria possess both N-linked and O-linked glycosylation pathways that display many commonalities with their eukaryotic and archaeal counterparts as well as some unexpected variations. In bacteria, protein glycosylation is not restricted to pathogens but also exists in commensal organisms such as certain Bacteroides species, and both the N-linked and O-linked glycosylation pathways can modify multiple proteins. Improving our understanding of the intricacies of bacterial protein glycosylation systems should lead to new opportunities to manipulate these pathways in order to engineer glycoproteins with potential value as novel vaccines.  相似文献   

18.
Sco proteins are present in all types of organisms, including the vast majority of eukaryotes and many prokaryotes. It is well established that Sco proteins in eukaryotes are involved in the assembly of the Cu(A) cofactor of mitochondrial cytochrome c oxidase; however their precise role in this process has not yet been elucidated at the molecular level. In particular, some but not all eukaryotes including humans possess two Sco proteins whose individual functions remain unclear. There is evidence that eukaryotic Sco proteins are also implicated in other cellular processes such as redox signalling and regulation of copper homeostasis. The range of physiological functions of Sco proteins appears to be even wider in prokaryotes, where Sco-encoding genes have been duplicated many times during evolution. While some prokaryotic Sco proteins are required for the biosynthesis of cytochrome c oxidase, others are most likely to take part in different processes such as copper delivery to other enzymes and protection against oxidative stress. The detailed understanding of the multiplicity of roles ascribed to Sco proteins requires the identification of the subtle determinants that modulate the two properties central to their known and potential functions, i.e. copper binding and redox properties. In this review, we provide a comprehensive summary of the current knowledge on Sco proteins gained by genetic, structural and functional studies on both eukaryotic and prokaryotic homologues, and propose some hints to unveil the elusive molecular mechanisms underlying their functions.  相似文献   

19.
The presence of shared conserved insertions or deletions in proteins (referred to as signature sequences) provides a powerful means to deduce the evolutionary relationships among prokaryotic organisms. This approach was used in the present work to deduce the branching orders of various eubacterial taxa consisting of photosynthetic organisms. For this purpose, portions of the Hsp60 and Hsp70 genes, covering known signature sequence regions, were PCR-amplified and sequenced from Heliobacterium chlorum, Chloroflexus aurantiacus and Chlorobium tepidum. This information was integrated with sequence data for several other proteins from numerous species to deduce the branching orders of different photosynthetic taxa. Based on signature sequences that are present in different proteins, it is possible to infer that the various eubacterial phyla evolved from a common ancestor in the following order: low G+C Gram-positive (H. chlorum) --> high G+C Gram-positive --> Deinococcus-Thermus --> green non-sulphur bacteria (Cf. aurantiacus ) --> cyanobacteria --> spirochaetes --> Chlamydia-Cytophaga-Aquifex-flavobacteria-green sulphur bacteria (Cb. tepidum) --> proteobacteria (alpha, delta and epsilon) and --> proteobacteria (beta and gamma). The members of the Heliobacteriaceae family that contain a Fe-S type of reaction centre (RC-1) and represent the sole photosynthetic phylum from the Gram-positive or monoderm group of prokaryotes are indicated to be the most ancestral of the photosynthetic lineages. Among the Gram-negative bacteria or diderm prokaryotes, green non-sulphur bacteria such as Cf. aurantiacus, which contains a pheophytin-quinone type of reaction centre (RC-2), are indicated to have evolved very early. Thus, the organisms containing either RC-1 or RC-2 existed before the evolution of cyanobacteria, which contain both these reaction centres to carry out oxygenic photosynthesis. The eubacterial divisions consisting of green sulphur bacteria and proteobacteria are indicated to have diverged after cyanobacteria. Some implications of these results concerning the origin of photosynthesis and the earliest prokaryotic fossils are discussed.  相似文献   

20.
Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20–40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but research is in progress to increase the production levels. In the past years the structure of protein-linked carbohydrates of a number of fungal proteins has been elucidated, showing the presence of oligo-mannosidic and high-mannose chains, sometimes with typical fungal modifications. A start has been made to engineer the glycosylation pathway in filamentous fungi to obtain strains that show a more mammalian-like type of glycosylation. This mini review aims to cover the current knowledge of glycosylation in filamentous fungi, and to show the possibilities to produce glycoproteins with these organisms with a more mammalian-like type of glycosylation for research purposes or pharmaceutical applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号