首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study evaluated whether glutamine (GLN) concentration was related to endothelial surface molecule expression and the migration of polymorphonuclear neutrophils (PMNs) through endothelial cells (ECs) stimulated by arsenic. Human umbilical vein endothelial cells (HUVECs) and PMNs were treated with different GLN concentrations (0, 300, 600 and 1000 microM) for 24 h. After that, we stimulated HUVECs for 3 h with 0.5 microM arsenic, and PMNs were allowed to transmigrate to ECs for 2 h. HUVEC surface expressions of cell adhesion molecules and integrin (CD11b) and interleukin (IL)-8 receptor expressions on PMNs were measured. The transendothelial migration of PMNs was also analyzed. The results showed that cell adhesion molecule (CAM) and integrin expressions in arsenic groups were higher than in those without arsenic. Among the arsenic groups, the expression of CAMs on ECs and CD11b, and IL-8 receptor on PMNs was lowest with 0 microM compared with the other GLN concentrations. Vascular CAM-1 on ECs and CD11b on PMN expression were higher with 300 microM than with 600 and 1000 microM GLN. IL-8 secretions from ECs and PMNs were higher with 300 muM than with 600 and 1000 microM GLN, and this was consistent with the expression of the IL-8 receptor on PMNs. Polymorphonuclear neutrophil transmigration was significantly higher with 300 muM GLN than with other GLN concentrations. These results suggest that ECs and PMNs were activated after arsenic stimulation. Cell adhesion molecule expressions on ECs and PMNs were suppressed in the absence of GLN. A low GLN concentration comparable to catabolic conditions resulted in higher adhesion molecule expression and greater transendothelial migration of neutrophils. Glutamine administration at levels similar to or higher than physiological concentrations reduced IL-8 and adhesion molecule expression; PMN transmigration was also decreased after stimulation with arsenic.  相似文献   

3.
Isoprostanes are metabolites of arachidonic acid found in blood under various conditions of oxidative stress. Because arachidonic acid derivatives are major mediators of inflammation, we investigated the potential inflammatory effects of iPF2alpha-III (previously 8-isoPGF2alpha) and iPE2-III (8-isoPGE2) on human polymorphonuclear granulocytes (PMN), as well as on human umbilical vein endothelial cells (HUVECs). The early activation marker CD11b on PMN and the adhesion molecules ICAM-1, E-selectin, and P-selectin on HUVECs were quantified by flow cytometry. Levels of the cytokines interleukin (IL)-6 and IL-8 were measured in the culture supernatant by enzyme-linked immunosorbent assay. Furthermore, adhesion of PMN to HUVECs was assessed. Neither isoprostane showed any direct stimulatory effects on PMN or HUVECs at concentrations of 0.1 or 1 microM: there was no acute elevation in expression of CD11b or P-selectin and no change of ICAM-1 or E-selectin after 4 or 24 h of incubation, respectively. The levels of interleukin IL-6 and IL-8 were also unaltered. However, PMN adhesion was significantly enhanced both after 4 and 24 h of incubation of HUVECs with iPF2alpha-III, and CD11b expression on PMN was elevated by contact of these cells with the supernatant of pre-exposed HUVECs. Neither of these actions were inhibited by an endothelin receptor antagonist (bosentan) or a combined thromboxane A2/isoprostane-receptor antagonist (SQ29548). Thus, although not having a direct pro-inflammatory potential, isoprostanes might indirectly accentuate PMN stimulation. This seems to occur via a receptor-independent mechanism, perhaps the production of an active metabolite of isoprostanes by endothelial cells.  相似文献   

4.
Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS.  相似文献   

5.
Polymorphonuclear leukocytes (PMNs) are essential to innate immunity in humans and contribute significantly to inflammation. Although progress has been made, the molecular basis for termination of inflammation in humans is incompletely characterized. We used human oligonucleotide microarrays to identify genes encoding inflammatory mediators that were differentially regulated during the induction of apoptosis. One hundred thirty-three of 212 differentially expressed genes encoding proinflammatory factors, signal transduction mediators, adhesion molecules, and other proteins that facilitate the inflammatory response were down-regulated during the induction of apoptosis following PMN phagocytosis. Among these, 42 genes encoded proteins critical to the inflammatory response, including receptors for IL-8 beta, IL-10 alpha, IL-13 alpha 1, IL-15 alpha, IL-17, IL-18, C1q, low-density lipoprotein, IgG Fc (CD32), and formyl peptide, Toll-like receptor 6, platelet/endothelial cell adhesion molecule-1 (CD31), P-selectin (CD62), IL-1 alpha, IL-16, and granulocyte chemoattractant protein-2 were down-regulated. Many of these genes were similarly down-regulated during Fas-mediated or camptothecin-induced apoptosis. We used flow cytometry to confirm that IL-8R beta (CXCR2) and IL-1 alpha were significantly down-regulated during PMN apoptosis. We also discovered that 23 genes encoding phosphoinositide and calcium-mediated signal transduction components, which comprise complex pathways essential to the inflammatory response of host cells, were differentially regulated during PMN apoptosis. Importantly, our data demonstrate that PMNs down-regulate proinflammatory capacity at the level of gene expression during induction of apoptosis. These findings provide new insight into the molecular events that resolve inflammation following PMN activation in humans.  相似文献   

6.
7.
Pterostilbene (PT), an analog of resveratrol, exerts a potent anti-inflammatory effect. However, the protective effects of PT against inflammation in endothelial cells have not been elucidated. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of endothelial cell inflammation. In this study, we explored the effect of PT on the tumor necrosis factor-α (TNF-α)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs) and elaborated the role of ERS in this process. TNF-α treatment significantly upregulated the levels of inflammation-related molecules in cell culture media, increased the adhesion of monocytes to HUVECs, and enhanced the expression of the MMP9 and ICAM proteins in HUVECs. Additionally, TNF-α potently increased ERS-related protein levels, such as GRP78 and p-eIF2α. However, PT treatment reversed the increased production of inflammatory cytokines and the adhesion of monocytes to HUVECs, as well as reduced the TNF-α-induced effects exerted by ERS-related molecules. Furthermore, thapsigargin (THA), an ERS inducer, attenuated the protective effect of PT against TNF-α-induced inflammation and ERS in HUVECs. Additionally, the downregulation of ERS signaling using siRNA targeting eIF2α and IRE1 not only inhibited ERS-related molecules but also simulated the therapeutic effects of PT on TNF-α-induced inflammation. In summary, PT treatment potently attenuates inflammation in vascular endothelial cells, which at least partly depends on the reduction of ERS.  相似文献   

8.
It has been determined previously that polymorphonuclear leukocytes, or PMNs, can facilitate melanoma cell extravasation through the endothelium under shear conditions. The interactions between melanoma cells and PMNs are mediated by the beta2-integrins expressed by PMNs and intercellular adhesion molecules (ICAM-1) expressed on melanoma cells. In this study, the kinetics of these interactions was studied using a parallel plate flow chamber. The dissociation rates were calculated under low force conditions for ICAM-1 interactions with both beta2-integrins, LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18), together and separately by using functional blocking antibodies on PMNs. The kinetics of PMNs stimulated with IL-8 was also determined. It was concluded that the small number of constitutively expressed active beta2-integrins on PMNs are sufficient to bind to ICAM-1 expressed on melanoma cells and that the intrinsic dissociation rate for these adhesion molecules appear to be more dependent on what method is used to determine them than on what cells express them.  相似文献   

9.
AimsIn this study, we evaluated whether catechins could inhibit the expression of pro-inflammatory mediators induced by dental caries-related bacteria, Streptococci, or pathogen-associated molecular patterns (PAMPs) stimulation in human dental pulp fibroblasts (HDPF). We further determined the mechanisms of the anti-inflammatory activity of catechins.Main methodsStreptococci or PAMP-stimulated HDPF were treated with catechin, and then the expression and production of pro-inflammatory mediators were determined by RT-PCR and ELISA. Furthermore, the signal transduction pathways activated with toll-like receptor (TLR)2 ligand were assessed by Immunoblot and ELISA using blocking assay with specific inhibitors.Key findingsIncreased expressions of pro-inflammatory mediators are found in inflamed dental pulp, especially in HDPF. We recently reported that dental pulpal innate immune responses may mainly result from the predominantly-expressed TLR2 signaling. Catechins, polyphenolic compounds in green tea, exert protective and healing effects through multiple mechanisms, including antioxidative and anti-inflammatory effects. However, there are no reports concerning the effects of catechins on dental pulp. In this study, we demonstrated that the up-regulated expressions of IL-8 or PGE2 in Streptococci or PAMP-stimulated HDPF were inhibited by catechins, (?)-epicatechin gallate (ECG) and (?)-epigallocatechin gallate (EGCG). In TLR2 ligand-stimulated HDPF, specific inhibitors of extracellular signal regulated kinase (ERK)1/2, p38, c-jun NH2-terminal kinase (SAP/JNK), NF-κB or catechins markedly reduced the level of pro-inflammatory mediators and the phosphorylation of these signal transduction molecules was suppressed by catechins.SignificanceThese findings suggest that catechins might be useful therapeutically as an anti-inflammatory modulator of dental pulpal inflammation.  相似文献   

10.
11.
Cytokines produced by activated macrophages and Th2 cells within the lung play a key role in asthma-associated airway inflammation. Additionally, recent studies suggest that the molecule CD40 modulates lung immune responses. Because airway epithelial cells can act as immune effector cells through the expression of inflammatory mediators, the epithelium is now considered important in the generation of asthma-associated inflammation. Therefore, the goal of the present study was to examine the effects of proinflammatory and Th2-derived cytokines on the function of CD40 in airway epithelia. The results show that airway epithelial cells express CD40 and that engagement of epithelial CD40 induces a significant increase in expression of the chemokines RANTES, monocyte chemoattractant protein (MCP-1), and IL-8 and the adhesion molecule ICAM-1. Cross-linking epithelial CD40 had no effect on expression of the adhesion molecule VCAM-1. The proinflammatory cytokines TNF-alpha and IL-1beta and the Th2-derived cytokines IL-4 and IL-13 modulated the positive effects of CD40 engagement on inflammatory mediator expression in airway epithelial cells. Importantly, CD40 ligation enhanced the sensitivity of airway epithelial cells to the effects of TNF-alpha and/or IL-1beta on expression of RANTES, MCP-1, IL-8, and VCAM-1. In contrast, neither IL-4 nor IL-13 modified the effects of CD40 engagement on the expression of RANTES, MCP-1, IL-8, or VCAM-1; however, both IL-4 and IL-13 attenuated the effects of CD40 cross-linking on ICAM-1 expression. Together, these findings suggest that interactions between CD40-responsive airway epithelial cells and CD40 ligand+ leukocytes, such as activated T cells, eosinophils, and mast cells, modulate asthma-associated airway inflammation.  相似文献   

12.

Aims

Although showing an anti-tumor activity, evodiamine also up-regulated IL-8 production of human gastric cancer AGS cells. This study aimed to assess this effect and to examine whether co-administration with berberine counteracts it.

Main methods

MTT assay was used to assess the cell proliferation and adhesive ability. Flow cytometry was performed to measure the cell cycle distribution. Wound healing assay was used to detect the migration ability of cells. IL-8 production was determined by ELISA. Levels of mRNA expression of IL-8, VCAM-1 and ICAM-1 were measured by real-time PCR. Molecular pathways involved were evaluated by ELISA and western-blotting methods.

Key findings

Evodiamine triggered proliferative inhibition and cell cycle arrest, and decreased migration of AGS cells. IL-8 expression and the adhesive ability of AGS cells to HUVECs were significantly increased by evodiamine, but were inhibited after being co-treated with berberine in AGS cells. As IL-8 was neutralized, increased adhesion of AGS cells to HUVECs induced by evodiamine was abolished. Berberine significantly suppressed the up-regulation of VCAM-1 and the down-regulation of ICAM-1 induced by evodiamine. Evodiamine provoked IL-8 secretion via ERK1/2, SAPK/JNK, JAK2 and AP-1 pathways which could be counteracted by berberine.

Significance

Although showing anti-proliferative and anti-migratory activities in AGS cells, evodiamine displayed a potential tendency to promote metastasis of gastric cancer cells by increasing IL-8 secretion and adhesion molecules. However, berberine could counteract the side-effect and simultaneously keep anti-proliferative and anti-migratory properties of evodiamine on AGS cells, which reduces the risk to use evodiamine in therapy of gastric cancers.  相似文献   

13.
We have recently elucidated a novel function for CD82 in E-cadherin-mediated homocellular adhesion; due to this function, it can inhibit cancer cell dissociation from the primary cancer nest and limit metastasis. However, the effect of CD82 on selectin ligand-mediated heterocellular adhesion has not yet been elucidated. In this study, we focused on the effects of the metastasis suppressor CD82/KAI1 on heterocellular adhesion of cancer cells to the endothelium of blood vessels in order to further elucidate the function of tetraspanins. The over-expression of CD82 in cancer cells led to the inhibition of experimentally induced lung metastases in mice and significantly inhibited the adhesion of these cells to human umbilical vein epithelial cells (HUVECs) in vitro. Pre-treatment of the cells with function-perturbing antibodies against sLea/x significantly inhibited the adhesion of CD82-negative cells to HUVECs. In addition, cells over-expressing CD82 exhibited reduced expression of sLea/x compared to CD82-negative wild-type cells. Significant down-regulation of ST3 β-galactoside α-2, 3-sialyltransferase 4 (ST3GAL4) was detected by cDNA microarray, real-time PCR, and western blotting analyses. Knockdown of ST3GAL4 on CD82-negative wild-type cells inhibited expression of sLex and reduced cell adhesion to HUVECs. We concluded that CD82 decreases sLea/x expression via the down-regulation of ST3GAL4 expression and thereby reduces the adhesion of cancer cells to blood vessels, which results in inhibition of metastasis.  相似文献   

14.
Capsoni F  Ongari A  Colombo G  Turcatti F  Catania A 《Peptides》2007,28(10):2016-2022
Natural melanocortin peptides exert broad effects on the host and they have remarkable therapeutic potential. However, successful use of melanocortins as therapeutic agents depends on the design of molecules that have more stable pharmacological profiles. The synthetic peptide (CKPV)(2), based on the C-terminal sequence of alpha-melanocyte stimulating hormone (alpha-MSH), has anti-tumor necrosis factor-alpha (TNF-alpha) effects in vitro and in vivo and is a promising candidate to treat inflammation. Because neutrophil activity is a major target for anti-inflammatory therapies, we determined whether (CKPV)(2) modulates human neutrophil functions in vitro. Incubation of freshly-separated human neutrophils with 10(-12)-10(-6)M (CKPV)(2) significantly inhibited activities relevant to the inflammatory reaction. Neutrophil migration toward the two chemoattractants interleukin 8 (IL-8) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) was significantly inhibited by (CKPV)(2). (CKPV)(2) also inhibited reactive oxygen intermediate (ROI) production induced by phorbol 12-myristate 13-acetate (PMA), but not that induced by fMLP. Because these effects of (CKPV)(2) were abolished by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (ddAdo), they appear to be cAMP-dependent. Finally, the peptide reduced lipopolysaccharide (LPS)-stimulated expression of TNF-alpha, interleukin-1beta (IL-1beta), interleukin-8 (IL-8), and intercellular adhesion molecule 1 (ICAM-1), as well as TNF-alpha protein release in cell supernatants. The data indicate that (CKPV)(2) modulates broad cAMP-dependent, anti-inflammatory pathways in human neutrophils.  相似文献   

15.
Nonsteroidal anti-inflammatory drug (NSAID)-induced mitochondrial oxidative stress (MOS) is an important prostaglandin (PG)-independent pathway of the induction of gastric mucosal injury. However, the molecular mechanism behind MOS-mediated gastric pathology is still obscure. In various pathological conditions of tissue injury oxidative stress is often linked with inflammation. Here we report that MOS induced by indomethacin (an NSAID) induces gastric mucosal inflammation leading to proinflammatory damage. Indomethacin, time dependently stimulated the expression of proinflammatory molecules such as intercellular adhesion molecule 1(ICAM-1), vascular cell adhesion molecule 1(VCAM-1), interleukin1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1) in gastric mucosa in parallel with the increase of neutrophil infiltration and injury of gastric mucosa in rat. Western immunoblotting and confocal microscopic studies revealed that indomethacin induced nuclear translocation of nuclear factor kappa-B (NF-κB) in gastric mucosal cells, which resulted in proinflammatory signaling. The prevention of MOS by antioxidant tryptamine-gallic acid hybrid (SEGA) inhibited indomethacin-induced expression of ICAM-1, VCAM-1, IL-1β, and MCP-1. SEGA also prevented indomethacin-induced NF-κB activation and neutrophil infiltration as documented by chromatin immunoprecipitation studies and neutrophil migration assay, respectively. Heme oxygenase-1 (HO-1), a cytoprotective enzyme associated with tissue repair mechanisms is stimulated in response to oxidative stress. We have investigated the role of HO-1 against MOS and MOS-mediated inflammation in recovering from gastropathy. Indomethacin stimulated the expression of HO-1 and indomethacin-stimulated HO-1 expression was reduced by SEGA, an antioxidant, which could prevent MOS. Thus, the data suggested that the induction of HO-1 was a protective response against MOS developed by indomethacin. Moreover, the induction of HO-1 by cobalt protoporphyrin inhibited inflammation and chemical silencing of HO-1 by zinc protoporphyrin aggravated the inflammation by indomethacin. Thus, NSAID by promoting MOS-induced proinflammatory response damaged gastric mucosa and HO-1 protected NSAID-induced gastric mucosal damage by preventing NF-κB activation and proinflammatory activity.  相似文献   

16.
Basophils have been shown to accumulate in allergic airways and other extravascular sites. Mechanisms responsible for the selective recruitment of basophils from the blood into tissue sites remain poorly characterized. In this study, we characterized human basophil rolling and adhesion on HUVECs under physiological shear flow conditions. Interestingly, treatment of endothelial cells with the basophil-specific cytokine IL-3 (0.01-10 ng/ml) promoted basophil and eosinophil, but not neutrophil, rolling and exclusively promoted basophil adhesion. Preincubation of HUVECs with an IL-3R-blocking Ab (CD123) before the addition of IL-3 inhibited basophil rolling and adhesion, implicating IL-3R activation on endothelial cells. Incubation of basophils with neuraminidase completely abolished both rolling and adhesion, indicating the involvement of sialylated structures in the process. Abs to the beta(1) integrins, CD49d and CD49e, as well as to P-selectin and P-selectin glycoprotein ligand 1, inhibited basophil rolling and adhesion. Furthermore, blocking chemokine receptors expressed by basophils, such as CCR2, CCR3, and CCR7, demonstrated that CCR7 was involved in the observed recruitment of basophils. These data provide novel insights into how IL-3, acting directly on endothelium, can cause basophils to preferentially interact with blood vessels under physiological flow conditions and be selectively recruited to sites of inflammation.  相似文献   

17.
18.

Objectives

To investigated the potential of a novel dendrosomal nanoformulation of curcumin (DNC) in blocking radiation-induced changes in irradiated human umbilical vein endothelial cells (HUVECs), and their adhesion to human THP-1 monocytoid cells.

Results

Co60 gamma rays reduced viability, raised the expression of adhesion molecules, ICAM-1, VCAM-1 and E-selectin (mRNA and protein), augmented the adhesion of THP-1 cells to HUVECs, activated NF-κB binding, increased the release of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) and induced oxidative damage (reduced glutathione declined, while 8-OHdG and TBARS increased). 5 µM DNC significantly inhibited these radiation-induced changes, activated the Nrf-2 pathway, and effectively suppressed THP-1 adhesion to HUVECs, implicating p38 MAPK signaling.

Conclusion

DNC treatment is a potential preventive method against inflammation and vascular damage from ionizing radiation.
  相似文献   

19.
Nitration products (nitroalkenes) of linoleic acid (LNO2) and oleic acid (OA-NO2) can act as endogenous PPARγ ligands with electrophilic properties to exert anti-inflammatory effects on atherosclerotic plaques in the vasculature. Here, we show that OA-NO2 and LNO2 prevent tumor necrosis factor α (TNFα)-stimulated inflammatory and atherogenic responses in human umbilical vein endothelial cells (HUVECs). Both OA-NO2 and LNO2 prevented TNFα-stimulated release of the cytokines, IL-6, IL-8, IL-12/p40, IFNγ, MCP-1, and IP-10, and inhibited NF-κB activation. OA-NO2 and LNO2 also blocked TNFα-induced expression of the adhesion molecules, ICAM-1, VCAM-1, and E-selectin, and suppressed monocyte adhesion to HUVECs. In each case, OA-NO2 was more potent and efficacious than was LNO2, possibly due to increased stability in aqueous media. Collectively, these results substantiate a new functional role for nitrated fatty acids, demonstrating that OA-NO2 and LNO2 exert an anti-inflammatory function against the inflammatory cascade initiated by the representative pro-inflammatory cytokine, TNFα.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号