首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

4.
We present an analysis of 10 blind predictions prepared for a recent conference, “Critical Assessment of Techniques for Protein Structure Prediction.”1 The sequences of these proteins are not detectably similar to those of any protein in the structure database then available, but we attempted, by a threading method, to recognize similarity to known domain folds. Four of the 10 proteins, as we subsequently learned, do indeed show significant similarity to then-known structures. For 2 of these proteins the predictions were accurate, in the sense that a similar structure was at or near the top of the list of threading scores, and the threading alignment agreed well with the corresponding structural alignment. For the best predicted model mean alignment error relative to the optimal structural alignment was 2.7 residues, arising entirely from small “register shifts” of strands or helices. In the analysis we attempt to identify factors responsible for these successes and failures. Since our threading method does not use gap penalties, we may readily distinguish between errors arising from our prior definition of the “cores” of known structures and errors arising from inherent limitations in the threading potential. It would appear from the results that successful substructure recognition depends most critically on accurate definition of the “fold” of a database protein. This definition must correctly delineate substructures that are, and are not, likely to be conserved during protein evolution. © 1995 Wiley-Liss, Inc.  相似文献   

5.
    
Zhou H  Zhou Y 《Proteins》2005,58(2):321-328
Recognizing structural similarity without significant sequence identity has proved to be a challenging task. Sequence-based and structure-based methods as well as their combinations have been developed. Here, we propose a fold-recognition method that incorporates structural information without the need of sequence-to-structure threading. This is accomplished by generating sequence profiles from protein structural fragments. The structure-derived sequence profiles allow a simple integration with evolution-derived sequence profiles and secondary-structural information for an optimized alignment by efficient dynamic programming. The resulting method (called SP(3)) is found to make a statistically significant improvement in both sensitivity of fold recognition and accuracy of alignment over the method based on evolution-derived sequence profiles alone (SP) and the method based on evolution-derived sequence profile and secondary structure profile (SP(2)). SP(3) was tested in SALIGN benchmark for alignment accuracy and Lindahl, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks for remote-homology detection and model accuracy. SP(3) is found to be the most sensitive and accurate single-method server in all benchmarks tested where other methods are available for comparison (although its results are statistically indistinguishable from the next best in some cases and the comparison is subjected to the limitation of time-dependent sequence and/or structural library used by different methods.). In LiveBench 8.0, its accuracy rivals some of the consensus methods such as ShotGun-INBGU, Pmodeller3, Pcons4, and ROBETTA. SP(3) fold-recognition server is available on http://theory.med.buffalo.edu.  相似文献   

6.
    
The threading approach to protein structure prediction suffers from the limited number of substantially different folds available as templates. A method is presented for the generation of artificial protein structures, amenable to threading, by modification of native ones. The artificial structures so generated are compared to the native ones and it is shown that, within the accuracy of the pseudoenergy function or force field used, these two types of structures appear equally useful for threading. Since a multitude of pseudonative artificial structures can be generated per native structure, the pool of pseudonative template structures for threading can be enormously enlarged by the inclusion of the pseudonative artificial structures. Proteins 28:522–529, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The three-dimensional (3D) structure prediction of proteins :is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accu- racy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%.  相似文献   

8.
Improving fold recognition without folds   总被引:4,自引:0,他引:4  
The most reliable way to align two proteins of unknown structure is through sequence-profile and profile-profile alignment methods. If the structure for one of the two is known, fold recognition methods outperform purely sequence-based alignments. Here, we introduced a novel method that aligns generalised sequence and predicted structure profiles. Using predicted 1D structure (secondary structure and solvent accessibility) significantly improved over sequence-only methods, both in terms of correctly recognising pairs of proteins with different sequences and similar structures and in terms of correctly aligning the pairs. The scores obtained by our generalised scoring matrix followed an extreme value distribution; this yielded accurate estimates of the statistical significance of our alignments. We found that mistakes in 1D structure predictions correlated between proteins from different sequence-structure families. The impact of this surprising result was that our method succeeded in significantly out-performing sequence-only methods even without explicitly using structural information from any of the two. Since AGAPE also outperformed established methods that rely on 3D information, we made it available through. If we solved the problem of CPU-time required to apply AGAPE on millions of proteins, our results could also impact everyday database searches.  相似文献   

9.
    
It has been many years since position-specific residue preference around the ends of a helix was revealed. However, all the existing secondary structure prediction methods did not exploit this preference feature, resulting in low accuracy in predicting the ends of secondary structures. In this study, we collected a relatively large data set consisting of 1860 high-resolution, non-homology proteins from the PDB, and further analyzed the residue distributions around the ends of regular secondary structures. It was found that there exist position-specific residue preferences (PSRP) around the ends of not only helices but also strands. Based on the unique features, we proposed a novel strategy and developed a tool named E-SSpred that treats the secondary structure as a whole and builds models to predict entire secondary structure segments directly by integrating relevant features. In E-SSpred, the support vector machine (SVM) method is adopted to model and predict the ends of helices and strands according to the unique residue distributions around them. A simple linear discriminate analysis method is applied to model and predict entire secondary structure segments by integrating end-prediction results, tri-peptide composition, and length distribution features of secondary structures, as well as the prediction results of the most famous program PSIPRED. The results of fivefold cross-validation on a widely used data set demonstrate that the accuracy of E-SSpred in predicting ends of secondary structures is about 10% higher than PSIPRED, and the overall prediction accuracy (Q(3) value) of E-SSpred (82.2%) is also better than PSIPRED (80.3%). The E-SSpred web server is available at http://bioinfo.hust.edu.cn/bio/tools/E-SSpred/index.html.  相似文献   

10.
    
Sequence alignment is a standard method for the estimation of the evolutionary, structural, and functional relationships among amino acid sequences. The quality of alignments depends on the used similarity matrix. Statistical contact potentials (CPs) contain information on contact propensities among residues in native protein structures. Substitution matrices (SMs) based on CPs are applicable for the comparison of distantly related sequences. Here, contact between amino acids was estimated on the basis of the evaluation of the distances between side-chain terminal groups (SCTGs), which are defined as the group of the side-chain heavy atoms with fixed distances between them. In this paper, two new types of CPs and similarity matrices have been constructed: one based on fixed cutoff distance obtained from geometric characteristics of the SCTGs (TGC1), while the other is distance-dependent potential (TGC2). These matrices are compared with other popular SMs. The performance of the matrices was evaluated by comparing sequence with structural alignments. The obtained results show that TGC2 has the best performance among contact-based matrices, but on the whole, contact-based matrices have slightly lower performance than other SMs except fold-level similarity.  相似文献   

11.
    
Zhou H  Zhou Y 《Proteins》2004,55(4):1005-1013
An elaborate knowledge-based energy function is designed for fold recognition. It is a residue-level single-body potential so that highly efficient dynamic programming method can be used for alignment optimization. It contains a backbone torsion term, a buried surface term, and a contact-energy term. The energy score combined with sequence profile and secondary structure information leads to an algorithm called SPARKS (Sequence, secondary structure Profiles and Residue-level Knowledge-based energy Score) for fold recognition. Compared with the popular PSI-BLAST, SPARKS is 21% more accurate in sequence-sequence alignment in ProSup benchmark and 10%, 25%, and 20% more sensitive in detecting the family, superfamily, fold similarities in the Lindahl benchmark, respectively. Moreover, it is one of the best methods for sensitivity (the number of correctly recognized proteins), alignment accuracy (based on the MaxSub score), and specificity (the average number of correctly recognized proteins whose scores are higher than the first false positives) in LiveBench 7 among more than twenty servers of non-consensus methods. The simple algorithm used in SPARKS has the potential for further improvement. This highly efficient method can be used for fold recognition on genomic scales. A web server is established for academic users on http://theory.med.buffalo.edu.  相似文献   

12.
    
Structural and functional annotation of the large and growing database of genomic sequences is a major problem in modern biology. Protein structure prediction by detecting remote homology to known structures is a well-established and successful annotation technique. However, the broad spectrum of evolutionary change that accompanies the divergence of close homologues to become remote homologues cannot easily be captured with a single algorithm. Recent advances to tackle this problem have involved the use of multiple predictive algorithms available on the Internet. Here we demonstrate how such ensembles of predictors can be designed in-house under controlled conditions and permit significant improvements in recognition by using a concept taken from protein loop energetics and applying it to the general problem of 3D clustering. We have developed a stringent test that simulates the situation where a protein sequence of interest is submitted to multiple different algorithms and not one of these algorithms can make a confident (95%) correct assignment. A method of meta-server prediction (Phyre) that exploits the benefits of a controlled environment for the component methods was implemented. At 95% precision or higher, Phyre identified 64.0% of all correct homologous query-template relationships, and 84.0% of the individual test query proteins could be accurately annotated. In comparison to the improvement that the single best fold recognition algorithm (according to training) has over PSI-Blast, this represents a 29.6% increase in the number of correct homologous query-template relationships, and a 46.2% increase in the number of accurately annotated queries. It has been well recognised in fold prediction, other bioinformatics applications, and in many other areas, that ensemble predictions generally are superior in accuracy to any of the component individual methods. However there is a paucity of information as to why the ensemble methods are superior and indeed this has never been systematically addressed in fold recognition. Here we show that the source of ensemble power stems from noise reduction in filtering out false positive matches. The results indicate greater coverage of sequence space and improved model quality, which can consequently lead to a reduction in the experimental workload of structural genomics initiatives.  相似文献   

13.
The detection of remote homolog pairs of proteins using computational methods is a pivotal problem in structural bioinformatics, aiming to compute protein folds on the basis of information in the database of known structures. In the last 25 years, several methods have been developed to tackle this problem, based on different approaches including sequence-sequence alignments and/or structure comparison. In this article, we will briefly discuss When, Why, Where and How (WWWH) to perform remote homology search, reviewing some of the most widely adopted computational approaches. The specific aim is highlighting the basic criteria implemented by different research groups and commenting on the status of the art as well as on still-open questions.  相似文献   

14.
胡始昌  江弋  林琛  邹权 《生物信息学》2012,10(2):112-115
蛋白质折叠问题被列为"21世纪的生物物理学"的重要课题,他是分子生物学中心法则尚未解决的一个重大生物学问题,因此预测蛋白质折叠模式是一个复杂、困难、和有挑战性的工作。为了解决该问题,我们引入了分类器集成,本文所采用的是三种分类器(LMT、RandomForest、SMO)进行集成以及188维组合理化特征来对蛋白质类别进行预测。实验证明,该方法可以有效表征蛋白质折叠模式的特性,对蛋白质序列数据实现精确分类;交叉验证和独立测试均证明本文预测准确率超过70%,比前人工作提高近10个百分点。  相似文献   

15.
    
Zhang J  Lin M  Chen R  Liang J  Liu JS 《Proteins》2007,66(1):61-68
Since a protein's dynamic fluctuation inside cells affects the protein's biological properties, we present a novel method to study the ensemble of near-native structures (NNS) of proteins, namely, the conformations that are very similar to the experimentally determined native structure. We show that this method enables us to (i) quantify the difficulty of predicting a protein's structure, (ii) choose appropriate simplified representations of protein structures, and (iii) assess the effectiveness of knowledge-based potential functions. We found that well-designed simple representations of protein structures are likely as accurate as those more complex ones for certain potential functions. We also found that the widely used contact potential functions stabilize NNS poorly, whereas potential functions incorporating local structure information significantly increase the stability of NNS.  相似文献   

16.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

17.
    
To understand the molecular basis of glycosyltransferases' (GTFs) catalytic mechanism, extensive structural information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds) to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First, GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster. Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The members of this reduced set were processed by three different fold recognition methods: 3D-PSSM, FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition methods, a value which is higher than the fold identification rate based on sequence comparison alone (48% for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold identification was not possible, we suggest several sequences as the most promising targets for a structural genomics initiative focused on the GTF protein family.  相似文献   

18.
When a protein sequence does not share any significant sequence similarity with a protein of known structure, homology modeling cannot be applied. However, many novel and interesting methods, such as secondary structure prediction, fold recognition, and prediction of long-range interactions, are being developed and have been shown to be reasonably successful in predicting protein structures from sequence data and evolutionary information. The a priori evaluation of the correctness of a prediction obtained by one of these methods is however often problematic. Consequently, it is important to use all available information provided by as many different methods as possible and all the available experimental data about the protein of interest, since the consistency of the results is indicative of the reliability of the prediction. Hence the need has arisen for suitable tools able to compare results provided by different methods and evaluate their consistency. We have therefore constructed GLASS, a general platform to read, visualize, compare, and evaluate prediction results from many different sources and to project these prediction results into three dimensions. In addition, GLASS allows the comparison of selected parameters calculated for a model with the distribution observed in real protein structures, thus providing an easy way to test new methods for evaluating the likelihood of different structural models. GLASS can be considered as a “workbench” for structural predictions useful to both experimentalists and theoreticians. Proteins 30:339–351, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
    
NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determination. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold recognition methods based on low resolution force fields. The value of this information has been tested by adding varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds. Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among the top ten guesses. With realistic secondary structure information, one can expect a 60-80% chance of finding a homologous structure. The method has then been applied to examples with published estimates of secondary structure. This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of differing amounts of relatively reliable data.  相似文献   

20.
  总被引:1,自引:0,他引:1  
The Profiles-3D application, an inverse-folding methodology appropriate for water-soluble proteins, has been modified to allow the determination of structural properties of integral-membrane proteins (IMPs) and for testing the validity of solved and model structures of IMPs. The modification, known as reverse-environment prediction of integral membrane protein structure (REPIMPS), takes into account the fact that exposed areas of side chains for many residues in IMPs are in contact with lipid and not the aqueous phase. This (1) allows lipid-exposed residues to be classified into the correct physicochemical environment class, (2) significantly improves compatibility scores for IMPs whose structures have been solved, and (3) reduces the possibility of rejecting a three-dimensional structure for an IMP because the presence of lipid was not included. Validation tests of REPIMPS showed that it (1) can locate the transmembrane domain of IMPs with single transmembrane helices more frequently than a range of other methodologies, (2) can rotationally orient transmembrane helices with respect to the lipid environment and surrounding helices in IMPs with multiple transmembrane helices, and (3) has the potential to accurately locate transmembrane domains in IMPs with multiple transmembrane helices. We conclude that correcting for the presence of the lipid environment surrounding the transmembrane segments of IMPs is an essential step for reasonable modeling and verification of the three-dimensional structures of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号