首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Inagaki  I Shimada  T Miyazawa 《Biochemistry》1985,24(4):1013-1020
The binding modes of inhibitors to ribonuclease T1 (RNase T1) were studied by the analyses of 270-MHz proton NMR spectra. The chemical shift changes upon binding of phosphate, guanosine, 2'-GMP, 3'-GMP, 5'-GMP, and guanosine 3',5'-bis(phosphate) were observed as high field shifted methyl proton resonances of RNase T1. One methyl resonance was shifted upon binding of phosphate and guanosine nucleotides but not upon binding of guanosine. Four other methyl resonances were shifted upon binding of guanosine and guanosine nucleotides but not upon binding of phosphate. From the analyses of nuclear Overhauser effects for the pair of H8 and H1' protons, together with the vicinal coupling constants for the pair of H1' and H2' protons, the conformation of the guanosine moiety as bound to RNase T1 is found to be C3'-endo-syn for 2'-GMP and 3'-GMP and C3'-endo-anti for 5'-GMP and guanosine 3',5'-bis(phosphate). These observations suggest that RNase T1 probably has specific binding sites for the guanine base and 3'-phosphate group (P1 site) but not for the 5'-phosphate group (PO site) or the ribose ring. The weak binding of guanosine 3',5'-bis(phosphate) and 5'-GMP to RNase T1 is achieved by taking the anti form about the glycosyl bond. The productive binding to RNase T1 probably requires the syn form of the guanosine moiety of RNA substrates.  相似文献   

2.
Assignments for 1H-NMR resonances of most of the residues of bovine pancreatic ribonuclease (RNase A) have been obtained by sequence-specific methods. Identification and classification of spin systems have been carried out by two-dimensional phase-sensitive correlated spectroscopy (360 MHz) and single relayed coherence transfer spectroscopy. Sequence-specific assignments have been achieved by phase-sensitive two-dimensional nuclear Overhauser effect spectroscopy. To overcome the problem of spectral overlap use has been made of (a) an exhaustive analysis of partly exchanged RNase A (spectra in D2O), (b) a comparison with the subtilisin-modified enzyme (RNase S) and (c) small spectral perturbations caused by changes in pH and temperature. The secondary structure elements have been identified from the observed sequential, medium and long-range nuclear Overhauser effects together with data from amide-exchange rates. All information collected leads to the conclusion that the crystal and the solution structures are closely similar.  相似文献   

3.
A 15N-NMR study on ribonuclease T1-guanylic acid complex   总被引:1,自引:0,他引:1  
Ribonuclease T1 is highly specific for the guanylic acid residue in polyribonucleotides. To clarify the origin of the substrate specificity, the interaction sites of guanylic acid with ribonuclease T1 were investigated by the use of 15N-NMR. 95% 15N-enriched guanosine-3'-phosphate was prepared and mixed with purified ribonuclease T1. 15N-NMR spectra of the mixtures at different concentrations were obtained and compared with that of the 15N-enriched substrate alone. Upon complex formation, a 15N signal assigned to the amino group nitrogen at position 2 of guanine shifted and was significantly broadened, suggesting a strong interaction with the enzyme through the amino group. This observation is consistent with the results of studies on the substrate specificity of chemical modification. Nuclear Overhauser effects of signals assigned to N-7 and N-3 were also changed, but not shift was observed. The observations do not support the occurrence of protonation at N-7 upon complex formation, which was previously proposed.  相似文献   

4.
Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.  相似文献   

5.
6.
Nearly complete sequence-specific 1H NMR assignments are presented for amino acid residues 3-81 in the 81-residue globular activation domain of porcine pancreatic procarboxypeptidase B isolated after limited tryptic proteolysis of the zymogen. These resonance assignments are consistent with the chemically determined amino acid sequence. Regular secondary structure elements were identified from nuclear Overhauser effects and the sequence locations of slowly exchanging backbone amide protons. The molecule contains two alpha-helices, including residues 20-30 and approximately residues 58-72, and a three-stranded antiparallel beta-sheet with the individual strands extending approximately from 12 to 17, 50 to 55, and 75 to 77. The identification of these secondary structures and a preliminary analysis of additional long-range NOE distance constraints show that isolated activation domain B forms a stable structure with the typical traits of a globular protein. The data presented here are the basis for the determination of the complete three-dimensional structure of activation domain B, which is currently in progress.  相似文献   

7.
We have carried out a nanosecond molecular dynamics simulation of an analogue of the ribonuclease C-peptide in water. The overall conformation has an extended region for the first three amino acids connected to an α-helix for residues 4–13, and this basic structure is preserved throughout the simulation, with helical hydrogen bonds present 87% of the time, on average. The final helical hydrogen bond is spontaneously broken and re-formed several times, providing a detailed picture of such winding/unwinding events. The simulation was used to estimate the effects of internal motion on proton nuclear Overhauser effect spectroscopy (NOESY) intensities for several classes of important cross peaks. Within the helical regions, the effects of internal motion vary only a little from one residue to another for backbone–backbone cross peaks, and the relevant correlation functions reach plateau values within about 50 ps. The spectral simulations show, however, that it may be difficult to establish a close quantitative connection between NOESY cross-peak volumes and measures of helical content. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Purification of ribonuclease T1   总被引:1,自引:0,他引:1  
An improved method for purifying ribonuclease T1 from Aspergillus oryzae is described. The method uses gradient elution from DEAE-cellulose and sulfopropyl-Sephadex columns followed by gel filtration on Sephadex G-50 to give almost 100 mg (50% yield) of ribonuclease T1 from 100 g of starting material in less than 5 days.  相似文献   

9.
The [1H:1H] nuclear Overhauser effects (NOE's) and spin-lattice relaxation times (T1's) are reported for the backbone protons of the decapeptide gramicidin S. Several methods for calculating interproton distances from these measurements are presented. Ratios of interproton distances were obtained from [1H:1H] NOE's and from the combination of [1H:1H]NOE'S and T1 values. Actual proton-proton distances were calculated from these ratios either by using the known distance between two geminal protons or distances derived from scalar coupling constants. The interproton distances calculated for gramicidin S are consistent with a II' beta-turn/antiparallel beta-sheet conformation.  相似文献   

10.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

11.
N J Skelton  S Forsén  W J Chazin 《Biochemistry》1990,29(24):5752-5761
The solution structure and dynamics of apo bovine calbindin D9k have been studied by a wide range of two-dimensional 1H nuclear magnetic resonance experiments. Due to the presence of conformational heterogeneity in the wild-type protein, the sequential resonance assignment was carried out on a Pro43----Gly mutant. By use of a combination of scalar correlation experiments acquired from H2O solution, 61 of the 76 1H spin systems could be assigned to particular amino acid types. The remaining resonances were assigned by a parallel series of experiments acquired from 2H2O solution. These spin system assignments provided a basis for complete sequential resonance assignments from interresidue backbone nuclear Overhauser effects (NOEs). Elements of secondary structure were identified from sequential and medium-range NOEs, backbone spin-spin coupling constants, and slowly exchanging amide protons. Four sections of helix are delineated, together with a short antiparallel beta-sheet interaction between the peptide loops involved in Ca2+ binding. The global fold is provided by combining these elements of secondary structure with a subset of the long-range, interhelix NOEs. Comparison with similar studies on the Ca2(+)-saturated protein indicates that at this crude level the structures are very similar. However, removal of the Ca2+ does dramatically affect the dynamics of the protein, as judged by amide proton exchange rates and aromatic ring rotation. This is particularly evident in the increased flexibility of the residues in the hydrophobic core.  相似文献   

12.
The binding of uridine vanadate to ribonuclease A has been investigated by one- and two-dimensional 1H NMR. The homonuclear Nuclear Overhauser and exchange spectroscopy spectrum of the uridine vanadate/RNase A complex exhibits cross peaks between both the C5H and C6H protons of uridine vanadate and the H epsilon 1 proton of His-12 of ribonuclease A. These cross peaks suggest that the H epsilon 1 proton of His-12 is in the vicinity of the uracil base of uridine vanadate, as observed in the crystallographic structure of the uridine vanadate/RNase A complex. However, no cross peaks are observed between the C5H and C6H protons of uridine vanadate and the H epsilon 1 proton of His-119 of ribonuclease A, although they were predicted based upon the distances calculated from coordinates of the crystallographic structure of the complex. These results suggest that there is a significant difference between the positioning of the His-119 side chain in the solution and in the crystallographic structures.  相似文献   

13.
14.
The single tryptophan residue in ribonuclease T1 [EC 3.1.4.8] was selectively oxidized by ozone to N'-formylkynurenine, which was then converted to kynurenine by acid-catalyzed deformylation in the frozen state. The two enzyme derivatives thus formed, NFK- and Kyn-RNase T1, lost enzymatic activity at pH 7.5, at which native RNase T1 most efficiently catalyzes the hydrolysis of RNA. At pH 4.75, the modified enzymes retained a decreased but distinct enzymatic activity toward RNA without alteration of substrate specificity, and Kyn-RNase T1 was four times more active than NFK-RNase T1. The binding of 3'-GMP to these modified enzymes decreased remarkably at pH 5.5, the optimum pH for binding to the intact enzyme. The gamma-carboxyl group of glutamic acid 58 was still reactive to iodoacetic acid after modification of tryptophan 59. The amounts of the carboxymethyl group introduced into NFK- and Kyn-RNase T1 were 0.36 and 0.59 mol, respectively, under conditions such that quantitative esterification of native RNase T1 takes place. CD spectroscopy indicated that the tertiary structure of the molecule was disordered in NFK-RNase T1, but not significantly in Kyn-RNase T1. It is concluded that tryptophan 59 functions in maintaining the active conformation of the protein structure, particularly in constructing the active environment for a functionally important set of groups involved in the binding of the substrate at the active site, although direct participation of in tryptophan the catalytic function of ribonuclease T1 is unlikely.  相似文献   

15.
Chen DT  Lin A 《Protein engineering》2002,15(12):997-1003
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.  相似文献   

16.
Sequence-specific assignments are presented for the polypeptide backbone protons and a majority of the amino-acid-side-chain protons of alpha-neurotoxin from Dendroaspis polylepis polylepis, and individual amide proton-exchange rates with the solvent are reported. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The molecule includes a three-stranded antiparallel beta-sheet, and there are indications that two additional short chain segments are arranged in an antiparallel beta-sheet. These structural elements are similar, but not identical, to either the secondary structure reported for erabutoxin b in single crystals, or the solution structure of cytotoxin CTXIIb from Naja mossambica mossambica.  相似文献   

17.
Thermal unfolding of ribonculease (RNase) T1 was studied by 1H nuclear Overhauser enhancement spectroscopy (NOESY) and 1H- 15N heteronuclear single-quantum coherence (HSQC) NMR spectroscopy at various temperatures. Native RNase T1 is a single-chain molecule of 104 amino acid residues, and has a single alpha-helix and two beta-sheets, A and B, which consist of two and five strands, respectively. Singular value decomposition analysis based on temperature-dependent HSQC spectra revealed that the thermal unfolding of RNase T1 can be described by a two-state transition model. The midpoint temperature and the change in enthalpy were determined as 54.0 degrees C and 696 kJ/mol, respectively, which are consistent with results obtained by other methods. To analyze the transition profile in more detail, we investigated local structural changes using temperature-dependent NOE intensities. The results indicate that the helical region starts to unfold at lower temperature than some beta-strands (B3, B4, and B5 in beta-sheet B). These beta-strands correspond to the hydrophobic cluster region, which had been expected to be a folding core. This was confirmed by structure calculations using the residual NOEs observed at 56 degrees C. Thus, the two-state transition of RNase T1 appears to involve locally different conformational changes.  相似文献   

18.
The melting temperature of ribonuclease T1 was studied by the fluorescent method. It was shown that in the melting region the tryptophanyl fluorescence spectrum of the protein containing a single tryptophanyl is the sum of two simple spectra typical for tryptophanyl located in the hydrophobic environment and for tryptophanyl completely accessible to aqueous solvent, correspondingly. This implies the evidence of two forms of the protein, i.e. native (folded) and denatured (unfolded), in the transition region. No intermediate states were found in measured quantities. Therefore, ribonuclease T1 melting process corresponds to the two states model. The free energy of native structure stabilization of the protein at room temperature is delta G approximately equal to 37 kJ/mol.  相似文献   

19.
A procedure is described for isolating the enzyme ribonuclease T(1) from Takadiastase, an extract of the mould Aspergillus oryzae. It involves an initial concentration of the enzyme by adsorption on DEAE-cellulose followed by gradient elution. Later the enzyme is chromatographed on the same adsorbent with an eluent of constant composition. Yields of 350-380mg of ribonuclease T(1) from 500g of Takadiastase were obtained.  相似文献   

20.
Peters D  Peters J 《Biopolymers》2001,59(6):402-410
The pseudomolecule approach to the structure of globular proteins in which a small number of water molecules are incorporated into the "molecule" is tested again by comparing the ribbon of hydrogen bonds in two proteins, ribonuclease F1 and T1. These two molecules are 59% homologous and have the same backbone conformation both globally and locally. The two ribbons of hydrogen bonds that cover the whole of the backbone are conserved with an accuracy of some 95% providing that allowance is made for the intrusion into one of the pair of such extra factors as the presence of adducts or metal ions, the insertions and the absence of a few water molecules from one of the x-ray data sets. Without these corrections, the conservation of the ribbon is some 85%. There are 35 conserved hydrogen-bonding residues, nearly all of which show many unions to the backbone or interactions with the active site. There are 36 point mutations that involve one or two hydrogen-bonding side chains and nearly all of these have either none or one hydrogen bond to the backbone. These are minor contributors to the ribbon of hydrogen bonds. Of the 71 residues involved in these two categories, all but six fit into the pseudomolecular picture of the structure of globular proteins. The remaining 30 residues almost all contain conserved hydrocarbon side chains that may have a second order effect on the structure through their space filling effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号