首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The position of individual fruit on kiwifruit vines (Actinidiadeliciosa var. deliciosa) grown on a horizontal trellis (pergola)and on a T-bar trellis was determined using a theodolite. Thephysical, chemical, and postharvest attributes of the fruitwere related to their position on the vine during development. Fruit from the pergola vines were more numerous, of lesser weight,with lower concentrations of most mineral nutrients, but greaterconcentrations of soluble solids, and similar flesh firmnessafter 12 weeks of storage at 0 °C, than fruit from the T-barvines. The position on the vine accounted for most of the variationin the attributes of the fruit. Differences between fruit ona single lateral accounted for 43-56% of the variation. Variationbetween vines was relatively small (< 4% of the total variance). The heavier fruit were located at the apical ends of the laterals,while greater concentrations of soluble solids were associatedwith fruit located closer to the cordon. The larger fruit fromthe pergola vines developed from the early opening flowers.A similar relationship existed initially for the T-bar vines,but a reduction in growth of fruit from the early opening flowers8 weeks after anthesis resulted in a more even distributionof fruit size at harvest. The strongest relationship between mineral composition and postharvestattributes of the fruit was with soluble solids concentration(29-46% of the variance). The relationship with flesh firmnesswas weak (r = -0·14 to -0·32). Individual elementscould not be considered in isolation but rather in groups ofelements. Nitrogen was grouped strongly with phosphorus, sulphur,potassium, and copper, while calcium was linked with a secondgroup which included manganese and zinc. These two groups werenegatively related to one another. The greatest proportion of fruit with superior characteristicswas located in the denser parts of the canopy. Fruit with lessdesirable attributes were from the extremities of the canopywhere the leaf area index was low.Copyright 1994, 1999 AcademicPress Actinidia deliciosa, kiwifruit, fruit position, fruit quality, within-vine variation  相似文献   

2.
A method was developed for the spatial analysis of plant architectureas it relates to the within-plant variation in the physical,chemical, and postharvest characteristics of the fruit Computergraphics were used to reconstruct the architectural frameworkand spatial arrangement of the fruit in the canopy of kiwifruitvines (Actinidia deliciosa) trained on two different supportstructures An infra-red beam theodolite was used to obtain thespatial coordinates of the vines components The data files generatedby the theodolite were in turn used with software specificallywritten for the project (MAPIT—Microcomputer Aided PlantImaging Technology) to provide a 3-dimensional reconstructionof the original vines Each fruit was colour coded so that extremesin their attributes could be easily identified and accuratelylocated in the canopy of the vine Patterns were clearly discerniblefor both the pergola and T-bar trained vines The heavier fruitwere located at the apical ends of the canes, while greatersoluble solids concentrations were associated with the smallerfruit located closer to the cordon These patterns were consistentfor all of the vines examined The use of the theodolite coupledwith the computer graphics described in this paper providesa rapid and objective means of accurately describing plant architecture Computer graphics, plant architecture, spatial analysis, theodolite, three-dimensional analysis, fruit quality, Actinidia deliciosa, kiwifruit  相似文献   

3.
Estimation of the Annual Cost of Kiwifruit Vine Growth and Maintenance   总被引:2,自引:0,他引:2  
Elemental analysis (for carbon, hydrogen, nitrogen and sulphur)and ash data for kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A. R. Ferguson var. deliciosa cv. Hayward] stems,leaves and fine roots were used to calculate the specific costs(kg carbohydrate kg-1 dry matter) of organ synthesis with ammoniacalnitrogen supply. Those costs ranged between 1·19 and1·35 for stems and 1·19 and 1·27 for leaves.The mean annual specific cost for fine roots was 1·17.Seasonal vine growth costs were calculated by multiplying thespecific costs by biomass data for a typical vine. Total costof synthesis was 57·2 kg carbohydrate per vine year-1,taking fine root turnover as three times per season. Nitratenitrogen supply increased that cost by 6·6% to 61·0kg carbohydrate per vine year-1. Fruit growth accounted forthe largest proportion of synthetic costs. Vine growth respiration(expressed in terms of carbohydrate equivalents) accounted forapproximately 11·5% of the total cost of synthesis. Maintenancerespiration was estimated to be 5·28, 8·44, 1·90,8·62 and 13·3 kg carbohydrate per organ year-1for stems, leaves, fruit, above-ground perennial componentsand roots, respectively. Total annual cost of growth and maintenancefor a mature vine was 94·7 and 98·5 kg carbohydrateper vine year-1 with ammoniacal and nitrate nitrogen supply,respectively. Both values are similar to an estimate of vinephotosynthesis. Maintenance respiration accounted for approximately40% of the total annual cost of vine growth, regardless of theform of nitrogen supplied. Peak carbohydrate demand was duringthe period from 60 to 160 d after budbreak.Copyright 1995, 1999Academic Press Actinidia deliciosa, kiwifruit, carbon economy, growth respiration, maintenance respiration  相似文献   

4.
Seasonal Accumulation of Starch by Components of the Kiwifruit Vine   总被引:2,自引:2,他引:0  
The accumulation of starch by various components of 6-year-oldkiwifruit vines (Actinidia deliciosa var dehciosa cv Hayward)was recorded over one season Twenty vines were harvested periodicallythroughout the year and separated into perennial components(fibrous roots, structural roots, stump, stem, cordon, laterals)and current season's growth (shoots, leaves, and fruit) The concentration of starch in the fibrous roots followed asinusoidal trend Minimum concentrations occurred 98 d afterbudbreak, while the maximum concentrations occurred 182 d laterCorresponding times in the structural roots were approximately42 d earlier In the above-ground perennial components, elevatedconcentrations of starch in the cordon, fruiting wood and barkof the stem were evident at budbreak and fruit harvest (approx220 d later) In the case of the stem, concentrations were greatestat fruit harvest Because the biomass of the perennial componentswas found to be relatively constant throughout the year, starchconcentrations and contents were directly proportional in thesetissues For current season's growth, peak concentrations and contentsin leaves and shoots were observed at fruitset and fruit harvest,respectively For fruit, starch increased continuously untilharvest Approximately 30% of the total starch content accumulated inthe perennial components by leaf abscission was lost duringwinter and early summer Quantitative losses were greatest forthe roots Regeneration of the starch pools in the perennialcomponents of the vine occurred from midseason until leaf abscissionAt the same time, approximately five times more starch was accumulatedby the current season's growth, in particular the fruit, thanby the perennial components As a result of the difference inthe rate of accumulation, the starch content of the currentseason's growth increased from less than 10% midseason to nearly60% of the total starch content of the vine by fruit harvest The results were discussed in relation to the carbon economyof the kiwifruit vine, and compared with seasonal trends instarch concentrations found for other deciduous crops Actinidia deliciosa, kiwifruit, seasonal changes, starch content, whole plant  相似文献   

5.
Mature field-grown kiwifruit vines (Actinidia deliciosa var.deliciosa cv. Hayward) were fertilized with 15N-labelled fertilizer(ammonium sulphate, 10 atom % 15N, 50 kgN ha-1) to investigatethe timing of uptake of fertilizer nitrogen (N) and its availabilityfor new season's growth. Treatments were applied on four occasions,representing 2, 6, 10 and 14 weeks prior to budbreak. Samplesof root, stem, cordon, fruiting cane, vacuum-extracted xylemsap, and new season's growth were collected at fortnightly intervalfrom early winter until 2 months after budbreak. Two weeks after application of each treatment, 15N equivalentto an average of 7% of the applied label was recovered in rootmaterial. Although label was taken up by roots, there was nomovement of 15N within the plant until about 1 month prior tobudbreak when it was measured in the stem and cordon. Fertilizernitrogen was not detected at the distal end of fruiting canes,and in new season's growth until 3-4 weeks after budbreak. Beforebudbreak, all nitrogen in the xylem sap was in amino forms.Nitrate appeared 4 weeks after budbreak, and although more enrichedwith 15N than the amino nitrogen, accounted for only 19% ofthe label. Eight weeks after budbreak, nitrate nitrogen accountedfor 57% of the label. There were no major treatment effects of 15N on vines in eitherspring or at harvest, although enrichments in fruit and leavesfrom the earliest treatment tended to be less at the end ofthe season than those from the later applications.Copyright1993, 1999 Academic Press Actinidia deliciosa, kiwifruit, nitrogen, 15N, nutrient uptake  相似文献   

6.
A response surface was developed by regression analysis to quantifythe seasonal respiratory losses by a kiwifruit [Actinidia deliciosa(A. Chev.) C. F. Liang et A. R. Ferguson var. deliciosa cv.Hayward] berry growing in Fresno, CA. The equation of the surfacewas LNRESP = 1·622 + 0·0697 x TEMP –0·0472x DAY + 0·000165 x DAYSQ, where LNRESP is the naturallogarithm of the respiration rate (nmol CO2 g d. wt–1s–1), TEMP is fruit temperature (°C), DAY is the numberof days after flowering, and DAYSQ is the square of the numberof days after flowering. Respiratory losses for a fruit witha final dry mass of 18·5 g were calculated to be 5·57and 5·92 g glucose per fruit per season in 1985 and 1986,respectively. Maintenance respiration was estimated to be 2·84and 3·19 g glucose per fruit per season for 1985 and1986, respectively. The total calculated bioenergetic cost ofkiwifruit berry growth and respiration was 25·25 and25·60 g glucose per fruit per season for 1985 and 1986,respectively. Respiratory losses, expressed as a proportionof the total carbohydrate required for fruit growth, were significant(mean 22·6%). The cost of fruit growth was estimatedto be very similar for two cooler sites (Davis and Watsonville)but estimates of maintenance respiration based on Fresno fruitrespiration data were unrealistically low for the Watsonvillesite. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson var. deliciosa cv. Hayward, kiwifruit, growth respiration, maintenance respiration, bioenergetic costs, model  相似文献   

7.
The accumulation of dry matter plus macro- and micronutnentsby various components of 6-year-old, field-grown kiwifruit vines(Actinidia deliciosa var deliciosa cv Hayward) was recordedover one season Twenty vines were harvested periodically throughoutthe year and separated into perennial components (roots <20 mm diameter, structural roots, stump, stem, cordon, one-year-oldfruiting wood) and current season's growth (non-fruiting shoots,laterals on fruiting wood, leaves and fruit) There was minimalseasonal variation (CVs < 7%) in biomass change in perennialcomponents of the vine Concentrations in these components eitherfluctuated about a constant value, or indicated a strong seasonaldependence Changes in biomass and nutnent concentrations incurrent season's growth, however, were very regular Prior tobudbreak, below-ground components contained between 48 and 81% of the total content of each element Roots < 20 mm diametercontained more total nutrient than any other perennial componentof the vine during the season, with the exception of Zn andCu, which were concentrated in the cordon There was consistentaccumulation of each nutrient from budbreak until harvest Ratesof greatest uptake occurred in the month following budbreak,or in the 3 weeks after anthesis Between dormancy and harvest,whole-vine contents increased for all nutrients Increases inFe, Mg, P, S and Zn ranged from 21 % (Zn) to 88% (Mg), and inB, Ca, Cl, Cu, K, N and Mn from 109% (Cu) to 302% (Cl) Despitethe large requirements of the current season's growth, net changesin the seasonal content of perennial components were relativelysmall Copper, Mg, P, N and Cl were the elements in which perennialreserves were utilized to the greatest extent to meet transientdeficits between nutnent demand for the current season’sgrowth, and that recently taken up from soil Generally, reserves utilized during the period of vegetativegrowth were replaced by harvest-time These observations, basedon application of a single fertiliser dressing before budbreak,suggest the vine maintains satisfactory fertility without theneed for late-season or post-harvest applications of fertiliserto supplement nutrient reserves, as occurs with some other fruitingcrops Actinidia deliciosa, kiwifruit, mineral nutrition, seasonal accumulation, whole-plant harvesting  相似文献   

8.
Four methods of determining the substrate requirements for synthesisof a kiwifruit [Actinidia deliciosa (A. Chev.) C. F. Liang etA. R. Ferguson var. deliciosa cv. Hayward] berry were comparedusing data derived from common kiwifruit berry samples collectedfrom anthesis to fruit maturity. The four methods were basedon fruit proximal analysis, elemental analysis, heats of combustion,or tissue carbon content. All methods gave similar patternsof seasonal costs and values of final cost to the plant (mean1.21 g glucose g–1 season–1) but there was lessagreement for growth respiration (mean 0.147 g glucose g–1season–1). This is the first time that a continuous recordof growth cost over the course of development has been presented,and the trends in seasonal cost reflect the uptake into andsynthesis of the different biochemical constituents in the fruit.The differences between the results of each method reflect theunderlying assumptions used in their development. It appearsfrom this work that the method of McDermitt and Loomis (1981),utilizing elemental analyses, is most preferred. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson var deliciosa cv Haywood, kiwifruit, true growth yield, plant growth efficiency, production value, glucose value, bioenergetic cost  相似文献   

9.
Growth and production of the temperate C4 species Cyperus longusL. was measured throughout a growing season in an establishedplot in Eastern Ireland. The maximum standing live biomass reachedwas 2·5 kg m–2. Estimates of unit leaf rate (ULR)and leaf area index (LAI) were made. The product of these quantitiesgave the crop growth rate (CGR) each week. C. longus was foundto maintain high values of LAI throughout the summer, with amaximum value of about 13 in early August. CGR reached a peakin early July. The optimum LAI was 11·6. Temperaturesat five levels in the plant canopy, and the amount of solarradiation intercepted by the canopy were measured continuouslyduring the summer. The mean daily rate of leaf extension waspositively correlated with the mean daily air temperature abovethe canopy but the temperature coefficient of the process waslow compared with other temperate species. The percentage ofsolar radiation intercepted by the canopy increased rapidlyin early summer, and canopy closure had occurred by mid-June.Rates of net photosynthesis were measured on young and old leafmaterial in situ at the time of peak LAI. In young leaves themaximum rates of net photosynthesis were higher than those publishedfor a range of temperate C3 species, but similar to those foundin another temperate C4 species, Spartina townsendii. Key words: C4 photosynthesis, leaf growth, productivity  相似文献   

10.
Water Use of Kiwifruit Vines and Apple Trees by the Heat-Pulse Technique   总被引:7,自引:0,他引:7  
Green, S. R. and Clothier, B. E. 1988. Water use of kiwifruitvines and apple trees by the heat-pulse technique.–J.exp. Bot. 39: 115–123. The compensation heat-pulse method has been used to measuresap velocities in the stem of kiwifruit vines (Actinidia deliciosa)and apple trees (Malus sylvestris x Red Delicious). Becauseof the high flow rates typical in kiwifruit vines, we were unableto measure heat-pulse velocity using standard probe spacings.We increased the spacing between sensors with the downstreamsensor 20 mm and the upstream sensor 5-0 mm respectively fromthe heater probe. Corrections for flow blockage by the probeswere re-calculated at this new spacing for our 2-0 mm-diameterheater and teflon temperature probes following the procedureof Swanson and Whitfield (1981) Sap flux through the stem was found from heat-pulse velocitiesat four radial depths in the stem. Fluxes measured using theheat-pulse technique were compared with water uptake from appletrees and kiwifruit vines that had been cut-off at the baseand the butt placed in a container of water. Heat-pulse measurementswere also compared with known flow rates through stem-sectionsof kiwifruit vine in the laboratory. In apple the heat-pulsemeasurements agreed with independent flux measurements in excisionexperiments. In kiwifruit the independently measured fluxeswere consistently 1.6 times larger than the fluxes measuredwith the heat-pulse method. Possible reasons for this anomalousresult in kiwifruit vines are discussed  相似文献   

11.
The rate of net photosynthesis (P) of whole plant stands oftomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativusL.) and sweet pepper (Capsicum annuum L.) was measured in sixlong-term experiments in large greenhouses under normal operatingconditions and CO2-concentrations between 200 and 1200 µmolmol-1. The objective was to quantify the responses to lightand carbon dioxide and to obtain data sets for testing simulationmodels. The method of measuring canopy photosynthesis involvedan accurate estimation of the greenhouse CO2 balance, usingnitrous oxide (N2O) as tracer gas to determine, on-line, theexchange rate between greenhouse and outside air. The estimatedrelative error in the observed P was about ± 10%, exceptthat higher relative errors could occur under particular conditions. A regression equation relating P to the photosynthetically activeradiation, the CO2 concentration and the leaf area index explained83-91% of the variance. The main canopy photosynthesis characteristicscalculated with the fitted regression equations were: canopyPmax 5-9 g m-2 h-1 CO2 uptake; ratio Pmax/LAI 1·5-3 gm-2 h-1; light compensation point 32-86 µmol s-1 m-2;light use efficiency (quantum yield) at low light 0·06-0·10µmol µmol-1 and CO2 compensation point 18-54 µmolmol-1. The results were related to the prevailing conditions.Copyright1994, 1999 Academic Press Canopy photosynthesis, Capsicum annuum L., carbon dioxide, CO2, CO2 balance, CO2 use efficiency, cucumber, Cucumis sativus L., glasshouse, greenhouse, light use efficiency, Lycopersicon esculentum Mill., sweet pepper, tomato, tracer gas  相似文献   

12.
Seedlings of kiwifruit (Actinidia deliciosa (A. Chev.) C. F.Liang et A. R. Ferguson vardeliciosa ) and A. arguta (Sieb.et Zucc.) Planch. ex Miq. grown in hydroponic nutrient solutionswith elevated salt (MgSO4and KCl) concentrations showed visiblesigns of stress at salt concentrations of 50 m M and above.The polyol myo -inositol accumulated in leaf tissue when thesalt was added to 15 m M or more, with increases being similarin the two species. The increase in concentration of myo -inositolwas approximately linear with rising salt. At any given saltconcentration an increase in myo -inositol was linear with timefrom application of salt.myo -Inositol concentrations increasedwithin the first 24 h of salt treatment, and declined againas quickly once the stress was removed. Sucrose also increasedwith salt stress, accumulating only once plants showed physicalsigns of stress. Accumulation of myo -inositol was negativelycorrelated to fructose and glucose. Copyright 1999 Annals ofBotany Company Actinidia arguta, Actinidia deliciosa, kiwifruit, leaf tissue, myo -inositol, salt stress, sucrose.  相似文献   

13.
Effects of Water Stress on Fruit Quality Attributes of Kiwifruit   总被引:5,自引:0,他引:5  
Four-year-old kiwifruit vines (Actinidia deliciosa(A. Chev.)C. F. Liang et A. R. Ferguson var.deliciosacv. Hayward) werestudied to determine response of the plant and effects on fruitquality when irrigation water was withheld either early or latein the growing season. The greatest effect on fruit growth occurredwhen water was withheld early in the season. Harvest weightof fruit from early-stressed vines was approx. 25% less thanthe weight of fruit on control vines. Early season water stressresulted in a transient increase in concentrations of solublecarbohydrates in both leaves and fruit. This was accompaniedby a reduction in stomatal conductance of the leaves. Starchlevels in leaves but not fruit were reduced by both stress treatments.Concentrations of sucrose at harvest in fruit from vines stressedlate in the season were markedly higher than in other fruit,and softness of the fruit was unaffected. These differenceswere maintained through the 12 weeks in cool storage after harvest.Withholding irrigation water to kiwifruit vines late in theseason may prove a useful management tool to manipulate somequality attributes of the fruit.Copyright 1998 Annals of BotanyCompany Kiwifruit;Actinidia deliciosa; water stress; fruit quality; soluble solids.  相似文献   

14.
The effects of varying nitrogen supply on canopy leaf area, response of leaf net photosynthesis (An) to quantum flux density (Q), and fruit yields of kiwifruit vines (Actinidia deliciosa var. deliciosa) were examined in a two-year field experiment. Vines were grown with 0, 250 or 750 kg N ha?1 year?1. The responses to nitrogen supply were compared with responses to shade, to examine the impact of reduced carbon assimilation on canopy leaf area and fruit yields. Nitrogen supply did not affect significantly any of the measured variables during the first season of the experiment. In the second season, canopy leaf area was reduced significantly where nitrogen supply was limited. The quantum efficiency of photosynthesis (φq) increased from 0. 03 mol CO2 mol?1 Q soon after leaf emergence to more than 0. 05 mol CO2 mol?1 Q during the middle of the growing season. The quantum saturated rate of An (Asat) also increased during the season, from 7–10 μmol CO2 m?2 s?1 soon after leaf emergence, to 15–20 (μmol CO2 m?2 s?1 during the middle of the growing season. φq and Asat increased significantly with nitrogen supply at all measurement times during the second season. For vines with high nitrogen, fruit yields in both seasons were similar, averaging 3. 05 kg m?2. Fruit yields in the second season were reduced significantly where nitrogen supply was limited, due to reduced fruit numbers. The relative effects of reduced leaf area and reduced leaf photosynthesis for carbon assimilation by nitrogen deficient vines were examined using a mathematical model of canopy photosynthesis for kiwifruit vines. Simulations of canopy photosynthesis indicated that effects on leaf area and on leaf photosynthesis were of similar importance in the overall effects of nitrogen deficiency on carbon assimilation. The effects of nitrogen supply on fruit numbers (i. e. flower development) preceded the measured effects on carbon assimilation, indicating that the nitrogen supply affected carbon partitioning to reserves in the first season.  相似文献   

15.
Measurements of net photosynthetic rate (at 1450µ molm-2s-1photosynthetically active radiation) of leaves, of leafand stem respiration, and of shoot growth of potentially-fruitinglaterals on kiwifruit (Actinidia deliciosa ) were used to estimateweekly shoot carbon balances over the first 10 weeks of shootgrowth (budburst to anthesis). Consistent differences in therate of shoot elongation, of internode expansion and of increasein basal diameter were found among shoots. Faster-growing (long)shoots acquired carbon by photosynthesis at a faster rate evenin the first few weeks after budburst, but the amount of carbonrequired to sustain this growth resulted in shoot carbon deficitswhich were approx. seven times greater than those of the slower-growing(short) shoots. It was estimated that the transition from shootcarbon deficit to carbon surplus occurred 3–4 weeks afterbudburst, irrespective of shoot growth rate. As a result ofsubsequent rapid increases in shoot photosynthetic rate, longshoots had a shoot carbon surplus of 4.4 g C week-1in the weekbefore anthesis, approx. three times that of the short shoots.Defoliation (66%) of shoots 1 week after budburst, and subsequentremoval of later-emerging leaves to maintain the level of defoliation,had the effect of slowing shoot growth in the carbon deficitperiod, particularly for the long shoots. However, the durationof shoot expansion in the defoliated shoots was longer, resultingultimately in shoots which were longer than the control shoots.Linkages among early carbon balance dynamics of shoots, shootlength at anthesis, and fruit growth are discussed. Actinidia deliciosa ; kiwifruit; shoot growth; carbon acquisition; respiration; photosynthesis  相似文献   

16.
Chemical Composition of Bleeding Xylem Sap from Kiwifruit Vines   总被引:5,自引:0,他引:5  
A study of the chemical composition and charge balance was madeof bleeding xylem sap collected from excised one-year-old extensionshoots of healthy, Mn-deficient, Mn-toxic and Zn-deficient kiwifruitvines (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson)immediately prior to leafburst. The exudates were analysed formacronutrient cations and anions, trace elements, amino acids,organic acids and sugars. Major charged species measured wereCa (13.3 mM), K (8.9 mM), Mg (5.6 mM), malate (12.5 mM) andphosphate (5.8 mM). Glutamine (12 mM) was the predominant Ncarrier identified, accounting for 58 per cent of the totalN followed by NO2-N (4.5 per cent), NH4+-N (3.5 per cent)and arginine-N (2.9 per cent). Approximately 22 per cent ofthe N was in a hydrolysable proteinaceous fraction comprisingmainly glutamine and glutamate. Eighteen free proteinaceousamino acids were idetified in sap, the most abundant being glutamine,glutamic acid, valine, isoleucine and phenylalanine. Computersimulation of the chemical composition predicted that in additionto hydrated cations, ion pairs formed between inorganic components(SO42–, HPO42–, H2PO4) and cations (Ca2+,Mg2+, Mn2+), plus metal-organic ligand complexes (Ca Malate,Zn Malate, FeCit, CuHis, CuGln) are important species involvedin translocation. The solubility product of hydroxyapatite wasexceeded in all exudates although in vitro precipitation wasnot observed. To achieve electroneutrality with the componentsmeasured, however, formation of precipitate precursors (hydroxyapatitenuclei) had to be assumed. Irregularities in Mn nutrition (butnot Zn) were clearly indicated by the elemental compositionof exudate suggesting the use of sap analysis as a possiblepre-season indicator of nutritional status for this species. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, kiwifruit, xylem sap composition, trace metals, amino acids, organic acids  相似文献   

17.
Ice-nucleation on kiwifruit   总被引:1,自引:0,他引:1  
Ice-nucleating capability of the kiwifruit vine, Actinidia deliciosa, was examined. Pseudomonas viridiflava, present as an epiphyte on the vine, was an effective icenucleating agent. The presence of other sources of ice nuclei on the surface of the vines, leaves and fruit, which could not be inhibited by anti-bacterial agents, was also demonstrated.  相似文献   

18.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

19.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

20.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号