共查询到20条相似文献,搜索用时 0 毫秒
1.
Laura Magnaghi-Jaulin Anne Marcilhac Mireille Rossel Christian Jaulin Yves Benyamin Fabrice Raynaud 《Chromosoma》2010,119(3):267-274
Calpains form a family of Ca2+-dependent cysteine proteases involved in diverse cellular processes. However, the specific functions of each calpain isoform remain unknown. Recent reports have shown that calpain 2 (Capn2) is essential for cell viability. We have recently shown that Capn2 is a nuclear protease associated with chromosomes during mitosis in mammalian embryonic cells. We now report that Capn2 depletion impairs mitosis and induces apoptosis in murine cells. Low Capn2 levels induce chromosome alignment defects, the loss of histone H3 threonine 3 phosphorylation at centromeres, and premature sister chromatid separation. Thus, Capn2 may play a role in fundamental mitotic functions, such as the maintenance of sister chromatid cohesion. 相似文献
2.
Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage 下载免费PDF全文
The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, TOF1, and CSM3, which mediate the intra-S checkpoint response. srs2 Delta mrc1 Delta synthetic lethality is due to inappropriate recombination, as the lethality can be suppressed by genetic elimination of homologous recombination. srs2 Delta mrc1 Delta synthetic lethality is dependent on the role of Mrc1 in DNA replication but independent of the role of Mrc1 in a DNA damage checkpoint response. mrc1 Delta, tof1 Delta and csm3 Delta mutants have sister chromatid cohesion defects, implicating sister chromatid cohesion established at the replication fork as an important factor in promoting repair of stalled replication forks through gap repair. 相似文献
3.
Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion 下载免费PDF全文
The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis‐specific STAG component of cohesin, STAG3. Newly generated STAG3‐deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot‐like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3‐devoid chromatin, and form complexes with cohesin SMC1β. No other deficiency in a single meiosis‐specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin. 相似文献
4.
Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity 下载免费PDF全文
Faithful chromosome segregation in mitosis requires the formation of a bipolar mitotic spindle with stably attached chromosomes. Once all of the chromosomes are aligned, the connection between the sister chromatids is severed by the cysteine protease separase. Separase also promotes centriole disengagement at the end of mitosis. Temporal coordination of these two activities with the rest of the cell cycle is required for the successful completion of mitosis. In this study, we report that depletion of the microtubule and kinetochore protein astrin results in checkpoint-arrested cells with multipolar spindles and separated sister chromatids, which is consistent with untimely separase activation. Supporting this idea, astrin-depleted cells contain active separase, and separase depletion suppresses the premature sister chromatid separation and centriole disengagement in these cells. We suggest that astrin contributes to the regulatory network that controls separase activity. 相似文献
5.
Tanaka K Yonekawa T Kawasaki Y Kai M Furuya K Iwasaki M Murakami H Yanagida M Okayama H 《Molecular and cellular biology》2000,20(10):3459-3469
Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant named eso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. The eso1(+) gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G(1)-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase eta of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase eta domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication. 相似文献
6.
SMC6 (RHC18) in Saccharomyces cerevisiae, which is a homologue of the Schizosaccharomyces pombe rad18+ gene and essential for cell viability, encodes a structural maintenance of chromosomes (SMC) family protein. In contrast to the rest of the SMC family of proteins, Smc1-Smc4, which are the components of cohesin or condensin, little is known about Smc6. In this study, we generated temperature sensitive (ts) smc6 mutants of budding yeast and characterized their properties. One ts-mutant, smc6-56, ceased growth soon after up-shift to a non-permissive temperature, arrested in the late S and G2/M phase, and gradually lost viability. smc6-56 cells at a permissive temperature showed a higher sensitivity than wild-type cells to various DNA damaging agents including methyl methanesulfonate (MMS). The rad52 smc6-56 double mutant showed a sensitivity to MMS similar to that of the rad52 single mutant, indicating that Smc6 is involved in a pathway that requires Rad52 to function. Moreover, no induction of interchromosomal recombination and sister chromatid recombination was observed in smc6-56 cells, which occurred in wild-type cells upon exposure to MMS. 相似文献
7.
During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila. 相似文献
8.
Mayer ML Pot I Chang M Xu H Aneliunas V Kwok T Newitt R Aebersold R Boone C Brown GW Hieter P 《Molecular biology of the cell》2004,15(4):1736-1745
Ctf8p is a component of Ctf18-RFC, an alternative replication factor C-like complex required for efficient sister chromatid cohesion in Saccharomyces cerevisiae. We performed synthetic genetic array (SGA) analysis with a ctf8 deletion strain as a primary screen to identify other nonessential genes required for efficient sister chromatid cohesion. We then assessed proficiency of cohesion at three chromosomal loci in strains containing deletions of the genes identified in the ctf8 SGA screen. Deletion of seven genes (CHL1, CSM3, BIM1, KAR3, TOF1, CTF4, and VIK1) resulted in defective sister chromatid cohesion. Mass spectrometric analysis of immunoprecipitated complexes identified a physical association between Kar3p and Vik1p and an interaction between Csm3p and Tof1p that we confirmed by coimmunoprecipitation from cell extracts. These data indicate that synthetic genetic array analysis coupled with specific secondary screens can effectively identify protein complexes functionally related to a reference gene. Furthermore, we find that genes involved in mitotic spindle integrity and positioning have a previously unrecognized role in sister chromatid cohesion. 相似文献
9.
We have identified a regulator of sister chromatid cohesion in a screen for cell cycle-controlled proteins. This 35 kDa protein is degraded through anaphase-promoting complex (APC)-dependent ubiquitination in G1. The protein is nuclear in interphase cells, dispersed from the chromatin in mitosis, and interacts with the cohesin complex. In Xenopus embryos, overexpression of the protein causes failure to resolve and segregate sister chromatids in mitosis and an increase in the level of cohesin associated with metaphase chromosomes. In cultured cells, depletion of the protein causes mitotic arrest and complete failure of sister chromatid cohesion. This protein is thus an essential, cell cycle-dependent mediator of sister chromatid cohesion. Based on sequence analysis, this protein has no apparent orthologs outside of the vertebrates. We speculate that the protein, which we have named sororin, regulates the ability of the cohesin complex to mediate sister chromatid cohesion, perhaps by altering the nature of the interaction of cohesin with the chromosomes. 相似文献
10.
Sororin is a positive regulator of sister chromatid cohesion that interacts with the cohesin complex. Sororin is required for the increased stability of the cohesin complex on chromatin following DNA replication and sister chromatid cohesion during G(2). The mechanism by which sororin ensures cohesion is currently unknown. Because the primary sequence of sororin does not contain any previously characterized structural or functional motifs, we have undertaken a structure-function analysis of the sororin protein. Using a series of mutant derivatives of sororin, we show that the ability of sororin to bind to chromatin is separable from both its role in sister chromatid cohesion and its interaction with the cohesin complex. We also show that derivatives of sororin with deletions or mutations in the conserved C terminus fail to rescue the loss-of-cohesion phenotype caused by sororin RNAi and that these mutations also abrogate the association of sororin with the cohesin complex. Our data suggest that the interaction of the highly conserved motif at the C terminus of sororin with the cohesin complex is critical to its ability to mediate sister chromatid cohesion. 相似文献
11.
12.
Rihui Yan Sharon E. Thomas Jui-He Tsai Yukihiro Yamada Bruce D. McKee 《The Journal of cell biology》2010,188(3):335-349
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis. 相似文献
13.
Sister chromatid cohesion depends on cohesin [1-3]. Cohesin associates with chromatin dynamically throughout interphase [4]. During DNA replication, cohesin establishes cohesion [5], and this process coincides with the generation of a cohesin subpopulation that is more stably bound to chromatin [4]. In mitosis, cohesin is removed from chromosomes, enabling sister chromatid separation [6]. How cohesin associates with chromatin and establishes cohesion is poorly understood. By searching for proteins that are associated with chromatin-bound cohesin, we have identified sororin, a protein that was known to be required for cohesion [7]. To obtain further insight into sororin's function, we have addressed when during the cell cycle sororin is required for cohesion. We show that sororin is dispensable for the association of cohesin with chromatin but that sororin is essential for proper cohesion during G2 phase. Like cohesin, sororin is also needed for efficient repair of DNA double-strand breaks in G2. Finally, sororin is required for the presence of normal amounts of the stably chromatin-bound cohesin population in G2. Our data indicate that sororin interacts with chromatin-bound cohesin and functions during the establishment or maintenance of cohesion in S or G2 phase, respectively. 相似文献
14.
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process. 相似文献
15.
Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize 总被引:2,自引:0,他引:2
With the advent of engineered minichromosome technology in plants, an understanding of the properties of small chromosomes is desirable. Twenty-two minichromosomes of related origin but varying in size are described that provide a unique resource to study such behavior. Fourteen minichromosomes from this set could pair with each other in meiotic prophase at frequencies between 25 and 100%, but for the smaller chromosomes, the sister chromatids precociously separated in anaphase I. The other eight minichromosomes did not pair with themselves, and the sister chromatids divided equationally at meiosis I. In plants containing one minichromosome, the sister chromatids also separated at meiosis I. In anaphase II, the minichromosomes progressed to one pole or the other. The maize (Zea mays) Shugoshin protein, which has been hypothesized to protect centromere cohesion in meiosis I, is still present at anaphase I on minichromosomes that divide equationally. Also, there were no differences in the level of phosphorylation of Ser-10 of histone H3, a correlate of cohesion, in the minichromosomes in which sister chromatids separated during anaphase I compared with the normal chromosomes. These analyses suggest that meiotic centromeric cohesion is compromised in minichromosomes depending on their size and cannot be maintained by the mechanisms used by normal-sized chromosomes. 相似文献
16.
Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre‐mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability. 相似文献
17.
E Sonoda T Matsusaka C Morrison P Vagnarelli O Hoshi T Ushiki K Nojima T Fukagawa I C Waizenegger J M Peters W C Earnshaw S Takeda 《Developmental cell》2001,1(6):759-770
Proteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion. 相似文献
18.
Zhang Z Ren Q Yang H Conrad MN Guacci V Kateneva A Dresser ME 《Molecular microbiology》2005,56(3):670-680
Budding yeast PDS5 is an essential gene in mitosis and is required for chromosome condensation and sister chromatid cohesion. Here we report that PDS also is required in meiosis. Pds5p localizes on chromosomes at all stages during meiotic cycle, except anaphase I. PDS5 plays an important role at first meiotic prophase. Failure in function of PDS5 causes premature separation of chromosomes. The loading of Pds5p onto chromosome requires the function of REC8, but the association of Rec8p with chromosome is independent of PDS5. Mutant analysis and live cell imaging indicate that PDS5 play a role in meiosis II as well. 相似文献
19.
Zhang J Shi X Li Y Kim BJ Jia J Huang Z Yang T Fu X Jung SY Wang Y Zhang P Kim ST Pan X Qin J 《Molecular cell》2008,31(1):143-151
Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion. 相似文献
20.
A SUMO-like domain protein, Esc2, is required for genome integrity and sister chromatid cohesion in Saccharomyces cerevisiae 下载免费PDF全文
The ESC2 gene encodes a protein with two tandem C-terminal SUMO-like domains and is conserved from yeasts to humans. Previous studies have implicated Esc2 in gene silencing. Here, we explore the functional significance of SUMO-like domains and describe a novel role for Esc2 in promoting genome integrity during DNA replication. This study shows that esc2Delta cells are modestly sensitive to hydroxyurea (HU) and defective in sister chromatid cohesion and have a reduced life span, and these effects are enhanced by deletion of the RRM3 gene that is a Pif1-like DNA helicase. esc2Delta rrm3Delta cells also have a severe growth defect and accumulate DNA damage in late S/G(2). In contrast, esc2Delta does not enhance the HU sensitivity or sister chromatid cohesion defect in mrc1Delta cells, but rather partially suppresses both phenotypes. We also show that deletion of both Esc2 SUMO-like domains destabilizes Esc2 protein and functionally inactivates Esc2, but this phenotype is suppressed by an Esc2 variant with an authentic SUMO domain. These results suggest that Esc2 is functionally equivalent to a stable SUMO fusion protein and plays important roles in facilitating DNA replication fork progression and sister chromatid cohesion that would otherwise impede the replication fork in rrm3Delta cells. 相似文献