首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stationary level of reactive oxygen species (ROS) in cerebellum granule cells of 12-day-old-rats was measured using three fluorescent dyes characteristic of different location within the neuronal cell: BODIPY 581/591 (for LOO.radicals), DCF-DA (for H202) and DHR123 (OH-radicals in mitochondria). When the neurons were activated by N-methyl- d -aspartate (NMDA) a dose- and time-dependent rise of the fluorescent signal was registered with each of the three dyes; the former dye provided the smallest and the latter the largest response. 3-HPG, a ligand for metabotropic receptors decreases ROS fluorescence and suppressed the NMDA-induced effect. NMDA and kainic acid presented simultaneously cumulatively increased ROS levels. Ouabain, specific inhibitors of Na/K-pump induced a considerable increase in ROS fluorescence, which was decreased by 2.5–5 m m KCl, 50 mkM Vanadate or 10 mkM D-AP5, an inhibitor of NMDA-activated ionic channels. The K0.5 for activation of ROS generation by Ouabain was more than 250 mkM, which is much higher than that for inhibition of Na/K-ATPase or its rubidium pumping activity. The data show that the Na/K-pump protein regulates ROS production by NMDA-receptors and that the E1(Na) conformation of the Na/K-pump being less sensitive to ouabain may be responsible for the effects. The data illustrate functional interaction between ionotropic and metabotropic receptors and Na/K-ATPase.
Acknowledgements:   Supported by DAAD, Grant 325-sm, Germany.  相似文献   

2.
Simulation studies were performed in a model of neuronal dendrite with Na+ and K+ channels and with ionotropic and metabotropic glutamate receptors. The ionotropic receptors were either N-methyl-D-aspartate (NMDA)-sensitive, voltage-dependent, and permeable to Ca2+, Na+, and K+, or non-NMDA-sensitive, voltage-independent, and permeable to Na+ and K+. The metabotropic receptors provided a catalytic effect on Ca2+-induced Ca2+ release from intracellular stores. Local intracellular concentration [Ca2+]i in the cytoplasm was changed because of exchange with the stores, axial diffusion, and transmembrane inward passive and outward pump fluxes. Tonic activation of ionotropic and metabotropic receptors in a particular range of intensities triggered the formation of spatially periodic [Ca2+]i hot and cold bands arising from an initial uniform state. The period and width of the bands were smaller at higher levels of tonic NMDA activation and higher metabotropically controlled rates of Ca2+-induced Ca2+ release. The bandwidths also depended on the dendrite diameter, the specific membrane, and cytoplasm resistivity. This activity-induced pattern led to long-term, spatially inhomogeneous change in local excitatory postsynaptic potentials (EPSPs) of NMDA synapses phasically activated with the same presynaptic intensity. The phasic EPSPs were potentiated if the synapse occurred in the hot band.  相似文献   

3.
The activation of a wide range of cellular receptors has been detected previously using a novel instrument, the microphysiometer. In this study microphysiometry was used to monitor the basal and cholinergic-stimulated activity of the Na+/K+ adenosine triphosphatase (ATPase) (the Na+/K+ pump) in the human rhabdomyosarcoma cell line TE671. Manipulations of Na+/K+ ATPase activity with ouabain or removal of extracellular K+ revealed that this ion pump was responsible for 8.8 +/- 0.7% of the total cellular energy utilization by those cells as monitored by the production of acid metabolites. Activation of the pump after a period of inhibition transiently increased the acidification rate above baseline, corresponding to increases in intracellular [Na+] ([Na+]i) occurring while the pump was off. The amplitude of this transient was a function of the total [Na+]i excursion in the absence of pump activity, which in turn depended on the duration of pump inhibition and the Na+ influx rate. Manipulations of the mode of energy metabolism in these cells by changes of the carbon substrate and use of metabolic inhibitors revealed that, unlike some other cells studied, the Na+/K+ ATPase in TE671 cells does not depend on any one mode of metabolism for its adenosine triphosphate source. Stimulation of cholinergic receptors in these cells with carbachol activated the Na+/K+ ATPase via an increase in [Na+]i rather than a direct activation of the ATPase.  相似文献   

4.
Regulation of cytosolic free Na (Nai) was measured in isolated rabbit gastric glands with the use of a recently developed fluorescent indicator for sodium, SBFI. Intracellular loading of the indicator was achieved by incubation with an acetoxymethyl ester of the dye. Digital imaging of fluorescence was used to monitor Nai in both acid-secreting parietal cells and enzyme-secreting chief cells within intact glands. In situ calibration of Nai with ionophores indicated that SBFI fluorescence (345/385 nm excitation ratio) could resolve 2 mM changes in Nai and was relatively insensitive to changes in K or pH. Measurements on intact glands showed that basal Nai was 8.5 +/- 2.2 mM in parietal cells and 9.2 +/- 3 mM in chief cells. Estimates of Na influx and efflux were made by measuring rates of Nai change after inactivation or reactivation of the Na/K ATPase in a rapid perfusion system. Na/K ATPase inhibition resulting from the removal of extracellular K (Ko) caused Nai to increase at 3.2 +/- 1.5 mM/min and 3.5 +/- 2.7 mM/min in parietal and chief cells, respectively. Na buffering was found to be negligible. Addition of 5 mM Ko and removal of extracellular Na (Nao) caused Nai to decrease rapidly toward 0 mM Na. By subtracting passive Na efflux under these conditions (the rate at which Nai decreased in Na-free solution containing ouabain), an activation curve (dNai/Nai) for the Na/K ATPase was calculated. The pump demonstrated the greatest sensitivity between 5 and 20 mM Nai. At 37 degrees C the pump rate was less than 3 mM/min at 5 mM Nai and 26 mM/min at 25 mM Nai, indicating that the pump has a great ability to respond to changes in Nai in this range. Carbachol, which stimulates secretion from both cell types, was found to stimulate Na influx in both cell types, but did not have detectable effects on Na efflux. dbcAMP+IBMX, potent stimulants of acid secretion, had no effect on Na metabolism.  相似文献   

5.
Thyroid stimulating hormone (TSH) binds to a specific TSH receptor (TSHR) which activates adenylate cyclase and increases cAMP levels in thyroidal cells. Recent studies have reported the presence of TSH receptor in several extra‐thyroidal cell types, including erythrocytes. We have previously suggested that TSH is able to influence the erythrocyte Na/K‐ATPase ouabain binding properties through a receptor mediated mechanism. The direct interaction of TSH receptor with the Na/K‐pump and a functional role of TSHR in erythrocytes was not demonstrated. The interaction of TSH receptor with Na/K‐pump and a TSHR functional role are not yet demonstrated in erythrocytes. In this study, we examined the interaction between the two receptors after TSH treatment using immunofluorescence coupled to confocal microscopy and a co‐immunoprecipitation technique. The cAMP dependent signalling after TSH treatment was measured to verify TSHR functionality. We found that TSH receptor and Na/K‐ATPase are localized on the membranes of both erythrocytes and erythrocyte ghosts; TSH receptor responds to TSH treatment by increasing intracellular cAMP levels from two to tenfold. In ghost membranes TSH treatment enhances up to three fold co‐localization of TSHR with Na/K‐ATPase and co‐immunoprecipitation confirms their direct physical interaction. In conclusion our results are compatible with the existence, in erythrocytes, of a functional TSHR that interacts with Na/K‐ATPase after TSH treatment, thus suggesting a novel cell signalling pathway, potentially active in local circulatory control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Na/K-ATPase prepared from cerebellum granule cells of 10-12-day-old mice is inhibited by glutamate and its agonists, NMDA (ligand for ionotropic receptors) and ACPD (ligand for metabotropic receptors). The inhibition is specific and prevented by subsequent antagonists (MK-801 for ionotropic NMDA-receptors and MCPG for metabotropic receptors). The inhibiting effect of NMDA is significantly reversed by cysteine and that of ACPD by chelerythrine or indolyl maleimide. It is concluded that ionotropic receptors inhibit Na/K-ATPase because of intracellular production of reactive oxygen species, and metabotropic receptors mediate their effect via protein kinase C.  相似文献   

7.
It is known that ouabain, a selective inhibitor of Na/K‐ATPase, not only can cause the activation of signal cascades, which regulate the cell viability, but also can cause the accumulation of free radicals, which can evoke the oxidative stress. We have shown that the nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals, but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The increasing level of free radicals resulting from both low and high concentrations of ouabain can be attenuated by the antioxidant, carnosine. Moreover, the long‐term incubation with ouabain leads to the cell death by necrosis and apoptosis. Ouabain‐mediated apoptosis and necrosis were also abolished by carnosine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Activation of rat cerebellum granule cells by N-methyl-D-aspartate (NMDA, 10(-4)-10(-3) M) results in progressive increase in reactive oxygen species (ROS) and suppression of the ouabain-sensitive part of Na/K-ATPase activity. When Na/K-ATPase was inhibited by high ouabain concentrations (10(-5)-5 x 10(-4) M), an increase in stationary ROS level in neuronal cells was noted, this effect being attenuated by NMDA antagonists, MK-801 and D-AP5. It is concluded that in cerebellum neurons, ouabain-resistant Na/K-ATPase is responsible for suppression of intracellular level of ROS, which, in turn, inhibit ouabain-sensitive Na/K-ATPase.  相似文献   

9.
Monensin rapidly tripled the initial rate and extent of α-aminoisobutyric acid accumulation by Swiss 3T3 cells. This ionophore catalyzes the electroneutral exchange of external Na for cellular protons and stimulates the NaK pump by suppling it with more Na. The stimulation of the NaK pump and α-aminoisobutyric acid uptake exhibited a similar dependence on monensin concentration. Ouabain prevented monensin from increasing α-aminoisobutyric acid transport. Aminoisobutryic acid transport was more than doubled at low doses of monensin that activated the NaK pump by elevating cell Na without significantly changing cell K. The rapid activation of α-aminoisobutyric acid transport is probably due to the hyperpolarizing effect of stimulating the electrogenic NaK pump. The stimulation of the NaK pump is quiescent fibroblasts by serum or growth factors may be sufficient to activate the Na-dependent amino acid transport systems.  相似文献   

10.
Electrophysiological studies were performed on slowly adapting cells of the crayfish (Astacus astacus) stretch receptor to examine some aspects of the operation of the sodium pump. Intracellular sodium activity (aiNa) and pH (pHi) were measured with liquid ion exchanger microelectrodes and the effects of NH3/NH+4 were observed. In cells in which the sodium pump was inhibited by K+-free solution, NH+4 induced a decrease of aiNa that can be explained only in Na+ extrusion is assumed. pHi measurements provide indirect evidence that NH+4 was taken up at the same time as Na+ was extruded. Ouabain blocks the operation of the sodium pump in the presence of K+ and NH+4. This result suggests that the ammonium-mediated decrease in aiNa in K+-free solution was caused by activation of the sodium pump. The results obtained by electrophysiological methods in a living cell are qualitatively in good agreement when compared with biochemical investigations on assays of crustacean Na+-K+ ATPase.  相似文献   

11.
RT-PCR demonstrated that ionotropic (iGluR NR1) and metabotropic (mGluR Group III) glutamate receptors are expressed in rodent lymphocytes. Flow cytometry showed that activation of iGluR NR1 by N-methyl-D-aspartate (NMDA) increased intracellular free calcium and reactive oxygen species (ROS) levels and activated caspase-3. The latter effect was attenuated by the NMDA antagonist, 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), by the antioxidant N-acetylcysteine and by cyclosporin A. Treatment with L-2-amino-4-phosphonobutyric acid (L-AP4), an mGluR Group III agonist, increased lymphocyte ROS levels but to a lower extent than did NMDA. Activation of lymphocytes with both NMDA and L-AP4 caused a synergistic increase in ROS levels and induced necrotic cellular death without elevating the caspase-3 activation observed in the presence of NMDA alone. These results show that lymphocyte iGluR NR1 and mGluR Group III receptors may be involved in controlling rodent lymphocyte functions and longevity as they regulate events in cell proliferation, maturation, and death.  相似文献   

12.
Ouabain is a well known inhibitor of the Na+ pump in all mammalian cells. We have demonstrated that ouabain at concentrations below those which inhibit the pump, i.e. 0.1 nM and 1.0 nM, induce proliferation of saphenous vein smooth muscle cells as measured by bromodeoxyuridine (BrdU) uptake. Ouabain at these low concentrations also activated MAPK. Proliferating concentrations of the drug did not increase levels of Ca(i)2+, suggesting no effect of this ion in the process. In addition, incubation of the cells in low levels of K+, which has been shown to inhibit the pump, had no effect on proliferation. These data show that low concentrations of ouabain that do not inhibit the Na+ pump can activate proliferation of vascular smooth muscle cells, suggesting that the pump complex may act as a transducing receptor.  相似文献   

13.
J A Lee  P A Fortes 《Biochemistry》1985,24(2):322-330
Sodium plus potassium activated adenosinetriphosphatase [(Na,K)ATPase] is composed of a catalytic subunit (alpha) and a glycoprotein subunit (beta) of unknown function. A method has been developed to label the beta subunit of purified dog kidney (Na,K)ATPase with fluorescent probes. The method consists of oxidation of beta-subunit oligosaccharides, reaction of the resulting aldehydes with fluorescent hydrazides, and reduction of the hydrazones and unreacted aldehydes with NaBH4. Two oxidation methods were compared. Simultaneous treatment with neuraminidase and galactose oxidase did not inhibit significantly (Na,K)ATPase activity and allowed insertion of up to 11 mol of probe per mol of beta. In contrast, oxidation of (Na,K)ATPase oligosaccharides with periodate resulted in 50-80% inhibition of the (Na,K)ATPase activity with low or undetectable labeling. Eleven commercial probes and two novel hydrazides were tested for labeling of (Na,K)ATPase treated with galactose oxidase and neuraminidase. Eight probes did not label (Na,-K)ATPase but labeled red cell ghosts oxidized with periodate. Four probes labeled beta specifically but either adsorbed to the membrane tightly, or cross-linked the beta subunits, or formed unstable adducts. Lucifer yellow CH labeled beta specifically without membrane adsorption. Labeling stoichiometries from 1 to 11 mol of lucifer yellow CH per mol of beta were obtained without inhibition of (Na,K)ATPase activity and without significant alteration of the anthroylouabain binding capacity or its association and dissociation kinetics. Anthroylouabain specifically bound to the lucifer-labeled (Na,K)ATPase had a decreased quantum yield, probably due to resonance energy transfer. This suggests that the sites of lucifer attachment on beta are within energy transfer distance from the cardiac glycoside site on alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Using small, intact frog muscles, the basic properties of Na+ and K+ transport were shown to resemble those of the (Na+ + K+)Mg2+ATPase (EC 3.6.1.3) isolated from skeletal muscle. (a) External K+ is essential for Na+ exit and K+ entry after the muscles are Na+-loaded and K+-depleted; (b) the ouabain concentration causing maximum inhibition of recovery is the same for transport as for the inhibition of the isolated enzyme. Ouabain causes a decrease in the sorbitol space and causes muscle fibre swelling. Absence of Ca2+ and Mg2+ inhibits recovery of normal Na+ and K+ concentrations and increases the sorbitol space. Insulin stimulates K+ uptake and Na+ loss in intact muscles but has no effect on the isolated sarcolemmal (Na+ + K+)Mg2+ATPase. Absence of divalent cations, addition of external ATP and of insulin enhance the ouabain inhibition of recovery. Bound ouabain was measured using [3H]ouabain and [14C]sorbitol (to measure the extracellular space). The process of binding was slowly reversible and was saturable within a range of ouabain concentrations from 1.48 X 10(-7) to 5.96 X 10(-7) M. From the nonexchangeable ouabain bound, the density of glycoside receptors was estimated to be 650 molecules per square micrometre of membrane surface. The absence of divalent cations, addition of external ATP and of insulin significantly enhanced the amount of ouabain bound. Substitution of Na+ and K+ by choline greatly reduced the bound ouabain.  相似文献   

15.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

16.
Carnosine and related compounds were compared in terms of their abilities to decrease the levels of reactive oxygen species (ROS) in suspensions of isolated neurons activated by N-methyl-D-aspartic acid (NMDA) using both stationary fluorescence measurements and flow cytometry. Carnosine was found to suppress the fluorescent signal induced by ROS production and decreased the proportion of highly fluorescent neurons, while histidine showed opposite effects. N-Acetylated derivatives of both carnosine and histidine demonstrated weak (statistically indistinguishable) suppressive effects on the ROS signal. N-Methylated derivatives of carnosine suppressed intracellular ROS generation to the same extent as carnosine. This rank of effectiveness is distinct from that previously obtained for the anti-radical ability of CRCs (anserine>carnosine>ophidine). These differences suggest that the similar ability of carnosine and its N-methylated derivatives to protect neuronal cells against the excitotoxic effect of NMDA is not solely related to the antioxidant properties of these compounds.  相似文献   

17.
Local protein synthesis in neuronal dendrites is critical for synaptic plasticity. However, the signaling cascades that couple synaptic activation to dendritic protein synthesis remain elusive. The purpose of this study is to determine the role of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling in regulating dendritic protein synthesis in live neurons. We first characterized the involvement of various subtypes of glutamate receptors and the mTOR kinase in regulating dendritic synthesis of a green fluorescent protein (GFP) reporter controlled by alphaCaMKII 5' and 3' untranslated regions in cultured hippocampal neurons. Specific antagonists of N-methyl-d-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and metabotropic glutamate receptors abolished glutamate-induced dendritic GFP synthesis, whereas agonists of NMDA and metabotropic but not AMPA glutamate receptors activated GFP synthesis in dendrites. Inhibitions of the mTOR signaling, as well as its upstream activators, phosphatidylinositol 3-kinase and AKT, blocked NMDA receptor-dependent dendritic GFP synthesis. Conversely, activation of mTOR signaling stimulated dendritic GFP synthesis. In addition, we also found that inhibition of the mTOR kinase blocked dendritic synthesis of the endogenous alphaCaMKII and MAP2 proteins induced by tetanic stimulations in hippocampal slices. These results identify critical roles of NMDA receptors and the mTOR signaling pathway for control of synaptic activity-induced dendritic protein synthesis in hippocampal neurons.  相似文献   

18.
Membrane (Na+K)ATPase isolated from rat brain was preincubated in a medium in which superoxide radicals were generated enzymatically. Exposure to superoxide radicals caused an irreversible inactivation, which could be prevented by further addition of superoxide dismutase. (Na+K)ATPase was also protected by addition of allopurinol, a xanthine oxidase inhibitor, during preincubation. The K-activated nitrophenylphosphatase associated with (Na+K)ATPase was also found to be inactivated by preincubation with superoxide radicals, which could be prevented by superoxide dismutase.  相似文献   

19.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

20.
It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence, hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution, indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号