首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theory holds that adaptive phenotypic plasticity evolves under spatial or temporal variation in natural selection. I tested this prediction in a classic system of predator‐induced plasticity: frog tadpoles (Rana temporaria) reacting to predaceous aquatic insects. An outdoor mesocosm experiment manipulating exposure to Aeshna dragonfly larvae revealed plasticity in most characters: growth, development, behavior, and external morphology. I measured selection by placing 1927 tadpoles into enclosures within natural ponds; photographs permitted identification of the survivors six to nine days later. Fitness was defined as a linear combination of growth, development, and survival that correlates with survival to age 2 in another anuran species. In enclosures with many predators, selection‐favored character values similar to those induced by exposure to Aeshna in mesocosms. The shift in selection along the predation gradient was strongest for characters that exhibited high predator‐induced plasticity. A field survey of 50 ponds revealed that predator density changes over a spatial scale relevant for movement of individual adults and larvae: 17% of variation in predation risk was among ponds separated by tens to thousands of meters and 81% was among sites ≤10 m apart within ponds. These results on heterogeneity in the selection regime confirm a key tenant of the standard model for the evolution of plasticity.  相似文献   

2.
Causal evidence linking resource competition to species divergence is scarce. In this study, we coupled field observations with experiments to ask if the degree of character displacement reflects the intensity of competition between two closely related spadefoot toads (Spea bombifrons and S. multiplicata). Tadpoles of both species develop into either a small-headed omnivorous morph, which feeds mostly on detritus, or a large-headed carnivorous morph, which specializes on and whose phenotype is induced by fairy shrimp. Previously, we found that S. multiplicata are inferior competitors for fairy shrimp and are less likely to develop into carnivores in sympatry with S. bombifrons. We compared four key trophic characters in S. multiplicata across natural ponds where the frequency of S. bombifrons varied. We found that S. multiplicata became increasingly more omnivore-like as the relative abundance of S. bombifrons increased. Moreover, in controlled laboratory populations, S. multiplicata became increasingly more omnivore-like and S. bombifrons became increasingly more carnivore-like as we increased the relative abundance of the other species. Phenotypic plasticity helped mediate this divergence: S. multiplicata became increasingly less likely to eat shrimp and develop into carnivores in the presence of S. bombifrons, a superior predator on shrimp. However, divergence also reflected differences in canalized traits: When reared under common conditions, S. multiplicata tadpoles became increasingly less likely to produce carnivores as their natal pond decreased in elevation. Presumably, this pattern reflected selection against carnivores in lower-elevation ponds, because S. bombifrons became increasingly more common with decreasing elevation. Local genetic adaptation to the presence of S. bombifrons was remarkably fine grained, with differences in carnivore production detected between populations a few kilometers apart. Our results suggest that the degree of character displacement potentially reflects the intensity of competition between interacting species and that both phenotypic plasticity and fine-scale genetic differentiation can mediate this response. Moreover, these results provide causal evidence linking resource competition to species divergence.  相似文献   

3.
Theory considers the covariation of seasonal life-history traits as an optimal reaction norm, implying that deviating from this reaction norm reduces fitness. However, the estimation of reaction-norm properties (i.e., elevation, linear slope, and higher order slope terms) and the selection on these is statistically challenging. We here advocate the use of random regression mixed models to estimate reaction-norm properties and the use of bivariate random regression to estimate selection on these properties within a single model. We illustrate the approach by random regression mixed models on 1115 observations of clutch sizes and laying dates of 361 female Ural owl Strix uralensis collected over 31 years to show that (1) there is variation across individuals in the slope of their clutch size-laying date relationship, and that (2) there is selection on the slope of the reaction norm between these two traits. Hence, natural selection potentially drives the negative covariance in clutch size and laying date in this species. The random-regression approach is hampered by inability to estimate nonlinear selection, but avoids a number of disadvantages (stats-on-stats, connecting reaction-norm properties to fitness). The approach is of value in describing and studying selection on behavioral reaction norms (behavioral syndromes) or life-history reaction norms. The approach can also be extended to consider the genetic underpinning of reaction-norm properties.  相似文献   

4.
We model the evolution of reaction norms focusing on three aspects: frequency-dependent selection arising from resource competition, maintenance and production costs of phenotypic plasticity, and three characteristics of environmental heterogeneity (frequency of environments, their intrinsic carrying capacity and the sensitivity to phenotypic maladaptation in these environments). We show that (i) reaction norms evolve so as to trade adaptation for acquiring resources against cost avoidance; (ii) maintenance costs cause reaction norms to better adapt to frequent rather than to infrequent environments, whereas production costs do not; and (iii) evolved reaction norms confer better adaptation to environments with low rather than with high intrinsic carrying capacity. The two previous findings contradict earlier theoretical results and originate from two previously unexplored features that are included in our model. First, production costs of phenotypic plasticity are only incurred when a given phenotype is actually produced. Therefore, they are proportional to the frequency of environments, and these frequencies thus affect the selection pressure to avoid costs just as much as the selection pressure to improve adaptation. This prevents the frequency of environments from affecting the evolving reaction norm. Secondly, our model describes the evolution of plasticity for a phenotype determining an individual's capability to acquire resources, and thus its realized carrying capacity. When individuals are distributed randomly across environments, they cannot avoid experiencing environments with intrinsically low carrying capacity. As selection pressures arising from the need to improve adaptation are stronger under such extreme conditions than under mild ones, better adaptation to environments with low rather than with high intrinsic carrying capacity results.  相似文献   

5.
We selected on phenotypic plasticity of thorax size in response to temperature in Drosophila melanogaster using a family selection scheme. The results were compared to those of lines selected directly on thorax size. We found that the plasticity of a character does respond to selection and this response is partially independent of the response to selection on the mean of the character. One puzzling result was that a selection limit of zero plasticity was reached in the lines selected for decreased plasticity yet additive genetic variation for plasticity still existed in the lines. We tested the predictions of three models of the genetic basis of phenotypic plasticity: overdominance, pleiotropy, and epistasis. The results mostly support the epistasis model, that the plasticity of a character is determined by separate loci from those determining the mean of the character.  相似文献   

6.
7.
Selection for phenotypic plasticity in Rana sylvatica tadpoles   总被引:1,自引:0,他引:1  
The hypothesis that phenotypic plasticity is an adaptation to environmental variation rests on the two assumptions that plasticity improves the performance of individuals that possess it, and that it evolved in response to selection imposed in heterogeneous environments. The first assumption has been upheld by studies showing the beneficial nature of plasticity. The second assumption is difficult to test since it requires knowing about selection acting in the past. However, it can be tested in its general form by asking whether natural selection currently acts to maintain phenotypic plasticity. We adopted this approach in a study of plastic morphological traits in larvae of the wood frog, Rana sybatica. First we reared tadpoles in artificial ponds for 18 days, in either the presence or absence of Anax dragonfly larvae (confined within cages to prevent them from killing the tadpoles). These conditioning treatments produced dramatic differences in size and shape: tadpoles from ponds with predators were smaller and had relatively short bodies and deep tail fins. We estimated selection by Anax on the two kinds of tadpoles by testing for non-random mortality in overnight predation trials. Dragonflies imposed strong selection by preferentially killing individuals with relatively shallow and short tail fins, and narrow tail muscles. The same traits that exhibited the strongest plasticity were under the strongest selection, except that tail muscle width exhibited no plasticity but experienced strong increasing selection. A laboratory competition experiment, testing for selection in the absence of predators, showed that tadpoles with deep tail fins grew relatively slowly. In the cattle tanks, where there were also no free predators, the predator-induced phenotype survived more poorly and developed slowly, but this cost was apparently not associated with particular morphological traits. These results indicate that selection is currently promoting morphological plasticity in R. sylvatica, and support the hypothesis that plasticity represents an adaptation to variable predator environments.  相似文献   

8.
The ability to cope with environmental change is fundamental to a species' evolution. Organisms can respond to seasonal environmental variation through phenotypic plasticity. The substantial plasticity in body mass of temperate species has often been considered a simple consequence of change in environmental quality, but could also have evolved as an adaptation to seasonality. We investigated the genetic basis of, and selection acting on, seasonal plasticity in body mass for wild bighorn sheep ewes (Ovis canadensis) at Ram Mountain, Alberta, under two contrasting environmental conditions. Heritability of plasticity, estimated as mass-specific summer and winter mass changes, was low but significant. The additive genetic variance component of relative summer mass change was greater under good environmental conditions (characterized by a population increase and high juvenile survival) than under poor conditions (population decrease and low juvenile survival). Additive genetic variance of relative winter mass change appeared independent of environmental conditions. We found evidence of selection on summer (relative) and winter (relative and absolute) mass change. For a given mass, more plastic individuals (with greater seasonal mass changes) achieve greater fitness through reproduction in the following year. However, genetic correlations between mass parameters were positive. Our study supports the hypothesis that seasonal plasticity in body mass in vertebrates is an adaptation that evolved under natural selection to cope with environmental variation but genetic correlations with other traits might limit its evolutionary potential.  相似文献   

9.
Costs of phenotypic plasticity are important for the evolution of plasticity because they prevent organisms from shaping themselves at will to match heterogeneous environments. These costs occur when plastic genotypes have relatively low fitness regardless of the trait value expressed. We report two experiments in which we measured selection on predator-induced plasticity in the behaviour and external morphology of frog tadpoles (Rana temporaria). We assessed costs under stressful and benign conditions, measured fitness as larval growth rate or competitive ability and focused analysis on aggregate measures of whole-organism plasticity. There was little convincing evidence for a cost of phenotypic plasticity in our experiments, and costs of canalization were nearly as frequent as costs of plasticity. Neither the magnitude of the cost nor the variation around the estimate (detectability) was sensitive to environmental stress.  相似文献   

10.
A modular concept of phenotypic plasticity in plants   总被引:2,自引:0,他引:2  
Based on empirical evidence from the literature we propose that, in nature, phenotypic plasticity in plants is usually expressed at a subindividual level. While reaction norms (i.e. the type and the degree of plant responses to environmental variation) are a property of genotypes, they are expressed at the level of modular subunits in most plants. We thus contend that phenotypic plasticity is not a whole-plant response, but a property of individual meristems, leaves, branches and roots, triggered by local environmental conditions. Communication and behavioural integration of interconnected modules can change the local responses in different ways: it may enhance or diminish local plastic effects, thereby increasing or decreasing the differences between integrated modules exposed to different conditions. Modular integration can also induce qualitatively different responses, which are not expressed if all modules experience the same conditions. We propose that the response of a plant to its environment is the sum of all modular responses to their local conditions plus all interaction effects that are due to integration. The local response rules to environmental variation, and the modular interaction rules may be seen as evolving traits targeted by natural selection. Following this notion, whole-plant reaction norms are an integrative by-product of modular plasticity, which has far-reaching methodological, ecological and evolutionary implications.  相似文献   

11.
Promising directions in plant phenotypic plasticity   总被引:9,自引:0,他引:9  
A research agenda for the next phase of plasticity studies calls for contributions from a diverse group of biologists, working both independently and collaboratively, to pursue four promising directions: examining dynamic, anatomical/architectural, and cross-generational plasticity along with simpler growth traits; carefully assessing the adaptive significance of those plasticity patterns; investigating the intricate transduction pathways that lead from environmental signal to phenotypic response; and considering the rich environmental context of natural systems. Progress in these areas will allow us to address broad and timely questions regarding the ecological and evolutionary significance of plasticity and the nature of phenotypic determination.  相似文献   

12.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

13.
We explore the effects of linear and quadratic reaction norms on heritability and directional selection. Genetic variation for reaction norm parameters can alter the heritability of traits; the magnitude of the heritability depends upon both the environment and the correlation among the parameters. Genetic variation for reaction norm parameters can alter the response to directional selection. Selection on a trait in one environment can shift both the mean of the trait measured across environments and the plasticity of the trait; the signs and magnitudes of these responses depend on the correlations among the parameters of the reaction norm. Our model is consistent with the results of ten experiments for selection on a trait in a single environment. In all experiments, selection towards the overall mean of the population always resulted in a relatively lower plasticity than selection away from the overall mean. Our model was able to predict the results of two experiments for selection on a trait index calculated over more than one environment. Predictions were good for the direct response to selection but poorer for the correlated response to selection. Our results indicate the need for more data on the effects of environment on genetic parameters, especially correlations among reaction norm parameters.  相似文献   

14.
Divergent selection acting on several different traits that cause multidimensional shifts are supposed to promote speciation, but the outcome of this process is highly dependent on the balance between the strength of selection vs. gene flow. Here, we studied a pair of sister species of Lake Victoria cichlids at a location where they hybridize and tested the hypothesis that divergent selection acting on several traits can maintain phenotypic differentiation despite gene flow. To explore the possible role of selection we tested for correlations between phenotypes and environment and compared phenotypic divergence (PST) with that based on neutral markers (FST). We found indications for disruptive selection acting on male breeding colour and divergent selection acting on several morphological traits. By performing common garden experiments we also separated the environmental and heritable components of divergence and found evidence for phenotypic plasticity in some morphological traits contributing to species differences.  相似文献   

15.
In a spatially heterogeneous environment, the rate at which individuals move among habitats affects whether selection favors phenotypic plasticity or genetic differentiation, with high dispersal rates favoring trait plasticity. Until now, in theoretical explorations of plasticity evolution, dispersal rate has been treated as a fixed, albeit probabilistic, characteristic of a population, raising the question of what happens when the propensity to disperse and trait plasticity are allowed to evolve jointly. We examined the effects of their joint evolution on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of loci whose phenotypic expression either are affected by the environment (plastic) or are not affected (nonplastic), plus a locus determining the propensity to disperse. When dispersal rate and trait plasticity evolve jointly, the system tends to dichotomous outcomes of either high trait plasticity and high dispersal, or low trait plasticity and low dispersal. The outcome strongly depended on starting conditions, with high trait plasticity and dispersal favored when the system started at high values for either trait plasticity or dispersal rate (or both). Adding a cost of plasticity tended to drive the system to genetic differentiation, although this effect also depended on initial conditions. Genetic linkage between trait plasticity loci and dispersal loci further enhanced this strong dichotomy in evolutionary outcomes. All of these effects depended on organismal life history pattern, and in particular whether selection occurred before or after dispersal. These results can explain why adaptive trait plasticity is less common than might be expected.  相似文献   

16.
旱地小麦在进化过程中经受了自然和人工的双重选择,其中人工选择在品种驯化和改良过程中扮演了关键的角色.本文综述了人工选择下旱地小麦进化特征、生理可塑性、形态可塑性和种群属性演变等几个相对独立、但又相互联系的问题,探讨了旱地小麦适应逆境胁迫的生理生态机理,并勾画了其进化路线.在旱地小麦从二倍体到六倍体的漫长进化历程中,自然选择对小麦适应外界环境起到关键作用;随着人工选择的介入,以产量为主要目标的性状选择不断得到强化,从群体上呈现适应逆境的形态特征.人工选择下旱地小麦的水分及养分利用效率不断提升,生物量分配呈现出地下部减少、地上部增加的分配特征,对密度胁迫和高温胁迫的耐受性不断增强,但单位面积光合速率呈逐渐降低趋势.旱地小麦生产是复杂的群体过程,而非简单的个体反应.人工选择提高了旱地小麦的种群适合度和个体繁殖分配,强化了与环境的协同性,却弱化了其自然种群属性.本文还对旱地小麦的进化图进行了描绘,对气候变化下旱地小麦育种和栽培管理提出几点建议.  相似文献   

17.
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density.  相似文献   

18.
Abstract.— Species of Anolis lizards that use broad substrates have long legs, which provide enhanced maximal sprint speed, whereas species that use narrow surfaces have short legs, which permit careful movements. We raised hatchling A. sagrei in terraria provided with only broad or only narrow surfaces. At the end of the experiment, lizards in the broad treatment had relatively longer hindlimbs than lizards in the narrow treatment. These results indicate that not only is hindlimb length a plastic trait in these lizards, but that this plasticity leads to the production of phenotypes appropriate to particular environments. Comparison to hindlimb lengths of other Anolis species indicates that the range of plasticity is limited compared to the diversity shown throughout the anole radiation. Nonetheless, this plasticity potentially could have played an important role in the early stages of the Caribbean anole radiation.  相似文献   

19.
Organisms are capable of an astonishing repertoire of phenotypic responses to the environment, and these often define important adaptive solutions to heterogeneous and unpredictable conditions. The terms ‘phenotypic plasticity’ and ‘canalization’ indicate whether environmental variation has a large or small effect on the phenotype. The evolution of canalization and plasticity is influenced by optimizing selection‐targeting traits within environments, but inherent fitness costs of plasticity may also be important. We present a meta‐analysis of 27 studies (of 16 species of plant and 7 animals) that have measured selection on the degree of plasticity independent of the characters expressed within environments. Costs of plasticity and canalization were equally frequent and usually mild; large costs were observed only in studies with low sample size. We tested the importance of several covariates, but only the degree of environmental stress was marginally positively related to the cost of plasticity. These findings suggest that costs of plasticity are often weak, and may influence phenotypic evolution only under stressful conditions.  相似文献   

20.
Stress occurring in periods shorter than life span strongly selects for reversible phenotypic plasticity, for maximum reliability of stress indicating cues and for minimal response delays. The selective advantage of genotypes that are able to produce adaptive reversible plastic phenotypes is calculated by using the concept of environmental tolerance. Analytic expressions are given for optimal values of mode and breadth of tolerance functions for stress induced and non-induced phenotypes depending on (1) length of stress periods, (2) response delay for switching into the induced phenotype, (3) response delay for rebuilding the non-induced phenotype, (4) intensity of stress, i.e. mean value of the stress inducing environment, (5) coefficient of variation of the stress environment and (6) completeness of information available to the stressed organism. Adaptively reversible phenotypic plastic traits will most probably affect fitness in a way that can be described by simultaneous reversible plasticity in mode and breadth of tolerance functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号