首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Islands are ideal model systems for testing ecological and evolutionary theory. This article reviews and synthesizes the findings of 24 studies of population genetics of island plants to gain insight into ecological and evolutionary processes on these unique, insular habitats. The studies reviewed found evidence for limited gene flow among islands and high genetic structure, but few tested for isolation by distance or among models of gene flow. Few studies compared diversity on islands with mainland populations or tested for bottlenecks, and the small number that did produced split results. Studies of rare species generally found that multiple islands would need to be protected to preserve genetic diversity. This review shows that surprisingly little work has been done to test theory using studies of population genetics on islands, and further work on testing among models of gene flow and examining population bottlenecks would be especially useful.  相似文献   

2.
城市绿化植物-凋落物-土壤系统碳氮磷化学计量特征研究   总被引:1,自引:0,他引:1  
以福建福州市常见的15种乔木、灌木和草本绿化植物为对象,连续2年取样测定了这些植物、凋落物、立地土壤、土壤微生物量C、N、P含量,探讨城市绿化植物-凋落物-土壤系统生态化学计量特征,为中国城市绿化植物的生态功能恢复与植被重建提供科学依据。结果表明:(1)绿化植物不同器官C、N、P含量均表现为草本灌木乔木、C含量N含量P含量、叶茎根,呈现出叶的富集作用;绿化植物各器官化学计量比(C/N、C/P、N/P)也表现出基本一致的乔木灌木草本的变化趋势;各绿化植物对N的再吸收率极显著高于对P的再吸收率(P0.01),绿化植物N和P再吸收率表现为乔木灌木草本,不同绿化植物对N的再吸收率差异均显著(P0.05),对P的再吸收率差异均不显著(P0.05)。(2)绿化植物凋落物C、N、P含量基本表现为草本灌木乔木,其中不同绿化植物凋落物P含量差异不显著。(3)绿化植物立地土壤C、N、P含量表现为草本灌木乔木,但其N/P差异不显著;土壤微生物量C、N、P含量基本表现为草本灌木乔木,其相应的C/N、C/P、N/P差异均不显著。(4)植物-土壤-凋落物-土壤微生物量(C、N、P)均随着生长季温度的升高而降低,随着年降水量的增加而升高,P素的回归系数绝对值明显低于C素和N素;植物-凋落物-土壤的C与N含量、N与P含量、C/P与N/P、以及土壤和植物的C/N与N/P之间均呈显著正相关关系,而凋落物的C/N与N/P之间呈显著负相关关系;典范对应CCA排序中,植物高度、冠幅、茎粗、比叶面积和叶面积指数对植物-凋落物-土壤-土壤微生物量C、N、P含量和C/N、C/P和N/P具有较大影响作用,其中高度、冠幅和茎粗与比叶面积和叶面积指数呈负相关关系,与凋落物-土壤-土壤微生物量C、N、P含量呈负相关关系,与植物C、N、P含量呈正相关关系;而凋落物-土壤-土壤微生物量C、N、P含量与其C/N、C/P和N/P均具有一定的正相关关系。  相似文献   

3.
Detection of Phytochrome in Green Plants   总被引:6,自引:6,他引:0       下载免费PDF全文
  相似文献   

4.
This article develops a simple evolutionarily stable strategy (ESS) model of resource allocation in partially selfing plants, which incorporates reproductive and sex allocation into a single framework. The analysis shows that, if female fitness gain increases linearly with resource investment, total reproductive allocation is not affected by sex allocation, defined as the fraction of reproductive resources allocated to male function. All else being equal, the ESS total reproductive allocation increases with increasing selfing rate if the fitness of selfed progeny is more than half that of outcrossed progeny, while the ESS sex allocation is always a decreasing function of the selfing rate. Self-fertilization is much more common in annual than in perennial plants, and this association has been commonly interpreted in terms of an effect of life history on mating system. The model in this article shows that self-fertilization can itself cause the evolution of the annual habit. Incorporating the effects of pollen discounting may not have any influence on total reproductive allocation if female fitness gain is a linear function of resource investment, although the evolutionarily stable sex allocation is altered. Evolution of the selfing rate is found to be independent of reproductive and sex allocation under the mass-action assumption that self- and outcross pollen are deposited simultaneously on receptive stigmas and compete for access to ovules.  相似文献   

5.
Chilling-Induced Heat Evolution in Plants   总被引:5,自引:0,他引:5       下载免费PDF全文
Increases in respiration, particularly via the alternative pathway, are observed in response to chilling. These increases result in increased heat evolution. We have measured increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. After 8 h of exposure to 8[deg]C, heat evolution in a variety of chilling-sensitive species increased 47 to 98%. No increase in heat evolution was seen with the extremely chilling-sensitive ornamental Episcia cupreata Hook. Heat evolution increased only 7 to 22% in the chilling-resistant species. Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Increased capacity to produce respiratory heat after exposure to chilling temperatures may contribute to the cold-acclimation process.  相似文献   

6.
Evolution of Gene Duplication in Plants   总被引:2,自引:0,他引:2  
  相似文献   

7.
Oleosins form a steric barrier surface on lipid droplets in cytoplasm, preventing them from contacting and coalescing with adjacent droplets. Oleosin genes have been detected in numerous plant species. However, the presence of oleosin genes in the most basally diverging lineage of land plants, liverworts, has not been reported previously. Thus we explored whether liverworts have an oleosin gene. In Marchantia polymorpha L., a thalloid liverwort, one predicted sequence was found that could encode oleosin, possessing the hallmark of oleosin, a proline knot (-PX5SPX3P-) motif. The phylogeny of the oleosin gene family in land plants was reconstructed based on both nucleotide and amino acid sequences of oleosins, from 31 representative species covering almost all the main lineages of land plants. Based on our phylogenetic trees, oleosin genes were classified into three groups: M-oleosins (defined here as a novel group distinct from the two previously known groups), low molecular weight isoform (L-oleosin), and high molecular weight isoform (H-oleosin), according to their amino-acid organization, phylogenetic relationships, expression tissues, and immunological characteristics. In liverworts, mosses, lycophytes, and gymnosperms, only M-oleosins have been described. In angiosperms, however, while this isoform remains and is highly expressed in the gametophyte pollen tube, two other isoforms also occur, L-oleosins and H-oleosins. Phylogenetic analyses suggest that the M-oleosin isoform is the precursor to the ancestor of L-oleosins and H-oleosins. The later two isoforms evolved by successive gene duplications in ancestral angiosperms. At the genomic level, most oleosins possess no introns. If introns are present, in both the L-isoform and the M-isoform a single intron inserts behind the central region, while in the H-isoform, a single intron is located at the 5′-terminus. This study fills a major gap in understanding functional gene evolution of oleosin in land plants, shedding new light on evolutionary transitions of lipid storage strategies.  相似文献   

8.
Gentisic acid has been shown to be one of the most commenlyoccurring aromatic acids of green plants. The systematic distributionof the compound is described and its possible relationship lignificationis discussed. Methods for its separation from other phenolicconstituents of plants and for the identification of the compoundare described.  相似文献   

9.
高等植物光敏色素的分子结构、生理功能和进化特征   总被引:1,自引:0,他引:1  
王静  王艇 《植物学通报》2007,24(5):649-658
光敏色素是植物感受外界环境变化的最重要光受体之一,对红光和远红外光非常敏感。本文综述了光敏色素的分子结构、它所包含的结构域和相应功能以及植物各主要类群中光敏色素基因家族的成员组成与进化关系;重点在分子水平上介绍了光敏色素的生理功能与作用机制。最后,基于最新的研究进展提出了将来的研究方向。  相似文献   

10.
At the end of the cell cycle a cell physically divides into two daughter cells in a process called cytokinesis. Cytokinesis consists of at least four steps: 1. The position of the presumptive cytokinesis furrow is specified. 2. A contractile ring is formed. 3. The contractile ring contracts, resulting in furrow ingression. 4. Cytokinesis completes with sealing of the membranes. The mitotic spindle positions the cytokinesis furrow at the cell cortex midway along the longitudinal axis of the spindle, which is both the mid-point between the two asters and the location of the spindle midzone. The mitotic spindle emits two consecutive signals that position the furrow: Microtubule asters provide a first signal; the spindle midzone provides a second signal. Our results support the view that the spindle midzone is dispensable for completion of cytokinesis. However, the spindle midzone can negatively affect aster-positioned cytokinesis, possibly because the aster- and midzone-positioned furrows compete for contractile elements.  相似文献   

11.
王静  王艇 《植物学报》2007,24(5):649-658
光敏色素是植物感受外界环境变化的最重要光受体之一, 对红光和远红外光非常敏感。本文综述了光敏色素的分子结构、它所包含的结构域和相应功能以及植物各主要类群中光敏色素基因家族的成员组成与进化关系; 重点在分子水平上介绍了光敏色素的生理功能与作用机制。最后, 基于最新的研究进展提出了将来的研究方向。  相似文献   

12.
Referee: Professor Jeffrey Duckett, School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London, E1 4NS, UK Spermatogenesis is a morphogenetic system in plants that is unparalled in its potential to yield diverse and informative structural and developmental data. The unquestionable homology of terrestrial plant spermatozoids to each other and to gametes of related lineages allows an examination of cellular evolution and provides sound data for phylogenetic analyses. In this review we examine the architecture and ontogeny of motile male gametes among major groups of land plants. We begin with a historical perspective that emphasizes the utility of spermatogenesis in understanding cellular evolution and in determining phylogenetic relationships. A cladistic analysis of data based solely on spermatogenesis and a conceptual phylogeny based on combined morphological and molecular data serve as the basis for the comprehensive discussion of architectural and developmental features of plant spermatozoids. Spermatozoids of green plants have two fundamental architectural designs: biflagellated or multiflagellated. Biflagellated gametes vary among basal archegoniates and charophytes in degree of coiling, position, and substructure of the basal bodies and number of organelles. Hornwort spermatozoids are simple, bilaterally symmetrical, and uniquely exhibit a right-handed coil. An autapomorphy among setaphytes (a clade containing mosses and liverworts) is the production of coiled biflagellated sperm cells with dimorphic staggered basal bodies. Like bryophytes, gametes of most lycophytes are biflagellated; two exceptions are Isoëtes and Phylloglossum, taxa that independently evolved multiflagellated sperm cells with approximately 20 flagella. Developmental information, especially related to the origin and development of the locomotory apparatus, are essential to determine structural homology among these taxa. Evaluation of the more complicated multiflagellated gametes of other vascular plants reveals similarities that support a monophyletic fern, Equisetum and Psilotum assemblage. Autapomorphies of this clade include the arrangement of the microtubular cytoskeleton, origin of the locomotory apparatus, and structural details of the basal bodies and multilayered structure. Sperm cell development in archegoniates involves the complete transformation of virtually every cellular component. Crucial to this process are proteinaceous elements of the cytoskeleton. Complex microtubule arrays unique to these cells include the spline, basal bodies, and flagella. The discrete microtubule-organizing centers (MTOCs) that generate these cytoskeletal arrays are equally complex and enable the examination of molecular constituents and ontogenetic modifications. The protein centrin is found in a variety of structures, including the diverse MTOCs and the locomotory apparatus. Actin plays a role in organellar shaping and positioning as well as in cytoplasmic deletion and the maintenance of spatial integrity in the mature cell. We conclude with an overview of the current and potential utility of male gametogenesis as an informative system in approaching fundamental questions relating to cellular differentiation and motility. Characterization of motility mutants will elucidate genetic control of structure-function relationships among cellular components, while biochemical and molecular investigations provide crucial data on the mechanism of development. The examination of spermatogenesis in additional taxa is essential to characterize further developmental variations. Moreover, such studies provide a more comprehensive understanding of plant biodiversity at the cellular level and lead to even greater phylogenetic resolution from this elegant morphogenetic system.  相似文献   

13.
Water movement in higher plants is treated as a symplastic fluid flow incorporated into a unified hydrodynamic system comprising the apoplast and vessels (or tracheids). Since water flow is of vital necessity for algae (phylogenetic ancestors of higher plants), it can be stated that higher plants colonized land, still keeping connections with their former water habitat. It is argued that colonization of terrestrial areas by plants became possible due to the appearance and maintenance of a gradient of water chemical potential between the rhizosphere and atmosphere, which drives water flows. Autonomization of flows in the symplast is considered as a vector of evolution, whereas the gradient of water activity is a factor of evolution. The osmotic models of water uptake by roots are analyzed; the role of potassium circulation in water-transporting system is determined; and a mechanism of automatic coupling between CO2 uptake through stomata and water evaporation from leaves is presented. An inherent property of the systems to explicitly or implicitly duplicate its structural or functional elements substantiates possible interactions between the mechanisms underlying opposite water flows in plants.  相似文献   

14.
15.
16.
The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants, and is one of the major groups of oxygenic photosynthetic eukaryotes. Current hypotheses posit the early divergence of two discrete clades from an ancestral green flagellate. One clade, the Chlorophyta, comprises the early diverging prasinophytes, which gave rise to the core chlorophytes. The other clade, the Streptophyta, includes the charophyte green algae from which the land plants evolved. Multi-marker and genome scale phylogenetic studies have greatly improved our understanding of broad-scale relationships of the green lineage, yet many questions persist, including the branching orders of the prasinophyte lineages, the relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), and the relationships among the streptophytes. Current phylogenetic hypotheses provide an evolutionary framework for molecular evolutionary studies and comparative genomics. This review summarizes our current understanding of organelle genome evolution in the green algae, genomic insights into the ecology of oceanic picoplanktonic prasinophytes, molecular mechanisms underlying the evolution of complexity in volvocine green algae, and the evolution of genetic codes and the translational apparatus in green seaweeds. Finally, we discuss molecular evolution in the streptophyte lineage, emphasizing the genetic facilitation of land plant origins.  相似文献   

17.
18.
MARCHANT  H. J. 《Annals of botany》1974,38(4):883-888
Uninucleate cells of Pediastrum become multinucleate by a seriesof synchronous mitoses. Mitotic nuclei are enclosed by a perinuclearenvelope of endoplasmic reticulum. Cytoplasmic cleavage of themultinucleate cells leads to the production of uninucleate,biflagellate zoospores (zooids) which are subsequently releasedinto a lenticular vesicle through a rupture in the outer layerof the parental cell wall. Within the vesicle, presumably derivedfrom part of the inner layer of parental wall, the zooids swarmactively before aggregating in a planar array. Bands of microtubulesunderlie the plasmalemma of the zooids which, when the zooidsaggregate, are usually coplanar with the newly formed colony.The role of microtubules in patterned colony formation and inthe development of the characteristic horns on peripheral cellsof colonies of Pediastrum is discussed.  相似文献   

19.
Two hypotheses account for the evolution of the inner antenna light-harvesting proteins of oxygenic photosynthesis in cyanobacteria, algae, and plants: one in which the CP43 protein of photosytem II gave rise to the extrinsic CP43-like antennas of cyanobacteria (i.e. IsiA and Pcb proteins), as a late development, and the other in which CP43 and CP43-like proteins derive from an ancestral protein. In order to determine which of these hypotheses is most likely, we analyzed the family of antenna proteins by a variety of phylogenetic techniques, using alignments of the six common membrane-spanning helices, constructed using information on the antenna proteins’ three-dimensional structure, and surveyed for evidence of factors that might confound inference of a correct phylogeny. The first hypothesis was strongly supported. As a consequence, we conclude that the ancestral photosynthetic apparatus, with 11 membrane-spanning helices, split at an early stage during evolution to form, on the one hand, the reaction center of photosystem II and, on the other hand, the ancestor of inner antenna proteins, CP43 (PsbC) and CP47 (PsbB). Only much later in evolution did the CP43 lineage give rise to the CP43’ proteins (IsiA and Pcb) of cyanobacteria. [Reviewing Editor: Dr. Patrick Keeling]  相似文献   

20.
Buschmann  C.  Langsdorf  G.  Lichtenthaler  H.K. 《Photosynthetica》2000,38(4):483-491
An overview is given on the fluorescence imaging of plants. Emphasis is laid upon multispectral fluorescence imaging in the maxima of the fluorescence emission bands of leaves, i.e., in the blue (440 nm), green (520 nm), red (690 nm), and far-red (740 nm) spectral regions. Details on the origin of these four fluorescence bands are presented including emitting substances and emitting sites within a leaf tissue. Blue-green fluorescence derives from ferulic acids covalently bound to cell walls, and the red and far-red fluorescence comes from chlorophyll (Chl) a in the chloroplasts of green mesophyll cells. The fluorescence intensities are influenced (1) by changes in the concentration of the emitting substances, (2) by the internal optics of leaves determining the penetration of excitation radiation and partial re-absorption of the emitted fluorescence, and (3) by the energy distribution between photosynthesis, heat production, and emission of Chl fluorescence. The set-up of the Karlsruhe multispectral fluorescence imaging system (FIS) is described from excitation with UV-pulses to the detection with an intensified CCD-camera. The possibilities of image processing (e.g., formation of fluorescence ratio images) are presented, and the ways of extraction of physiological and stress information from the ratio images are outlined. Examples for the interpretation of fluorescence images are given by demonstrating the information available for the detection of different developmental stages of plant material, of strain and stress of plants, and of herbicide treatment. This novel technique can be applied for near-distance screening or remote sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号