首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current fuel loads and distribution suggest that fire events are infrequent and of a low intensity in the regenerated dry sclerophyll forests of the Victorian box‐ironbark ecosystem. However, many box‐ironbark species possess traits consistent with fire‐cued regeneration. It is unclear the degree to which human disturbance may have altered fire regimes in these forests. The infrequent and low‐intensity fire regime suggested by current fuel dynamics may pose a threat to the persistence of fire‐cued species. Obligate seeders such as those of the Fabaceae and Mimosaceae, common in box‐ironbark understoreys, may be particularly vulnerable if inter‐fire intervals exceed seed longevity. This study used seed burial trials to examine seed dormancy and longevity in five legume species to explore their capacity to regenerate under an infrequent, low‐intensity fire regime. All species displayed dormancy and longevity patterns consistent with other south‐east Australian legumes. Before burial, dormancy levels were high for all species (98–100%). After 3 years, storage under in situ and ex situ conditions, dormancy in Pultenaea prostrata remained at pre‐burial levels with virtually no seed becoming non‐dormant. Over time, some Acacia seed became non‐dormant under both in situ and ex situ storage, with the pattern varying among species. Longevity also varied between species. Variation in the dormancy and longevity patterns observed in these obligate seeder legumes suggests two strategies: (i) releasing a portion of soil‐stored seed from dormancy during the inter‐fire period to permit inter‐fire recruitment; and (ii) retaining most soil‐stored seed as dormant during the inter‐fire interval. Both strategies represent potential weaknesses under a long fire interval regime. The first relies on dormancy release translating to successful recruitment and requires ongoing inter‐fire input into the soil seed bank. The second relies on seed longevity exceeding the inter‐fire interval. Whether either is more suitable to coping with long‐term infrequent fire requires long‐term monitoring.  相似文献   

2.
A fundamental part of developing effective biodiversity conservation is to understand what factors affect the distribution and abundance of particular species. However, there is a paucity of data on ecological requirements and habitat relationships for many species, especially for groups such as reptiles. Furthermore, it is not clear whether habitat relationships for particular species in a given environment are transferable to other environments within their geographical range. This has implications for the type of ‘landscape model’ used to guide management decisions in different environments worldwide. To test the hypothesis that species‐specific habitat relationships are transferable to other environments, we present microhabitat models for five common lizard species from a poorly studied habitat – insular granite outcrops, and then compared these relationships with studies from other environments in south‐eastern Australia. We recorded twelve species from five families, representing 699 individuals, from 44 outcrops in the south‐west slopes of New South Wales. Five lizard species were abundant and accounted for 95% of all observations: Egernia striolata, Ctenotus robustus, Cryptoblepharus carnabyi, Morethia boulengeri and Carlia tetradactyla (Scincidae). Linear regression modelling revealed suites of different variables related to the abundance patterns of individual species, some of which were broadly congruent with those measured for each species in other environments. However, additional variables, particular to rocky environments, were found to relate to reptile abundance in this environment. This finding means that species' habitat relationships in one habitat may not be readily transferable to other environments, even those relatively close by. Based on these data, management decisions targeting reptile conservation in agricultural landscapes, which contain rocky outcrops, will be best guided by landscape models that not only recognize gradients in habitat suitability, but are also flexible enough to incorporate intraspecies habitat variability.  相似文献   

3.
Abstract Most of the original forest and woodland cover on the western slopes of New South Wales and the northern plains of Victoria has been cleared for agriculture (wheat, sheep and cattle) and what remains is highly fragmented and modified by a long history of disturbance. Over the past three decades, native eucalypt trees and shrubs have been planted extensively in a part of this region to provide a range of environmental benefits. Our aim was to determine the extent to which these plantings could improve biological diversity in agricultural landscapes in south‐eastern Australia and to identify the variables influencing their effectiveness. We sampled birds at 120 sites encompassing the range of available patch sizes, stand ages, floristic and structural conditions, and habitat attributes for revegetated areas and remnants of native vegetation, and we compared these to nearby paddocks. Eucalypt plantings were found to provide significant improvements in bird population density compared with cleared or sparsely treed paddocks, and mixed eucalypt and shrub plantings had similar bird communities to remnant native forest and woodland in the region. Birds displayed a strong response to patch size, with both larger (≥5–20 ha) eucalypt plantings and larger (≥5–20 ha) remnants having more species and more individuals per unit area than smaller (<5 ha) patches of these vegetation types. Older (10–25 years) plantings had more bird species and individuals than young (<10 years) plantings. The distance from remnant forest and woodland (habitat connectivity) appeared to be an important variable influencing bird species richness in eucalypt plantings. The main differences were due to the greater numbers of species classified as woodland‐dependent in the larger‐sized patches of plantings and remnants. Eucalypt plantings provided useful habitat for at least 10 declining woodland‐dependent species, notably for the Speckled Warbler, Red‐capped Robin and Rufous Whistler. The Brown Treecreeper and Dusky Woodswallow appeared to be the species most limited by the extent of remnant forest and woodland in the region. Plantings of all shapes and sizes, especially those larger than 5 ha, have an important role to play in providing habitat for many bird species. Restoration efforts are more likely to be successful if eucalypt plantings are established near existing remnant vegetation.  相似文献   

4.
Aim The potential nestedness of assemblages of birds, arboreal marsupials and lizards was examined in a fragmented landscape in south‐eastern Australia. We assessed which ecological processes were related to the presence or absence of nestedness, particularly in relation to previous autoecological studies in the same study area. Location Data were collected at Buccleuch State Forest, c. 100 km to the west of the Australian Capital Territory in south‐eastern Australia. Methods Presence/absence matrices were compiled for birds (40 pine sites, 40 continuous forest sites, 43 fragments), arboreal marsupials (41 continuous forest sites, 39 fragments) and lizards (30 sites including all landscape elements) from a range of field surveys conducted since 1995. Nestedness was analysed using a standardized discrepancy measure, and statistical significance was assessed using the RANDNEST null model. For birds, species thought to be extinction‐prone were analysed separately to assess if assemblages comprising extinction‐prone species were more strongly nested than others. Also, sites with a substantial amount of Eucalyptus radiata were analysed separately to assess whether nestedness was stronger if environmental heterogeneity was minimized. Results The assemblages of lizards and arboreal marsupials were not nested, probably because of qualitative differences between species in response to environmental conditions. The assemblages of birds in fragments and pine sites were significantly nested, but nestedness was substantially stronger in fragments. For birds, nestedness appeared to be related to somewhat predictable extinction sequences, although there were many outliers in the analysis. Nestedness increased when extinction‐prone species were analysed by themselves. Nestedness decreased when environmental heterogeneity was minimized by including only sites dominated by E. radiata. Main conclusions In a given landscape, different vertebrate assemblages can respond in vastly different ways to fragmentation. Nestedness analyses can provide a useful overview of likely conservation issues in fragmented landscapes, for example by highlighting the possible roles of local extinction and immigration. However, nestedness analyses are a community‐level tool, and should be complemented by more detailed autoecological studies when applied in a conservation context.  相似文献   

5.
Summary In south‐eastern Australia, the introduced Red Fox (Vulpes vulpes) is a major predator of native wildlife and livestock. Fox control in agricultural landscapes is heavily reliant on the laying of poisoned baits by private landholders, yet there have been few assessments of the application or success of landholder‐baiting practices. We evaluated a community‐based fox‐baiting campaign, typical of programs employed throughout the agricultural regions of south‐eastern Australia to control foxes. We recorded the spatial coverage of 1080 baits deployed by landholders, assessed baiting procedures, monitored the survival of six radio‐collared foxes during and after baiting, and compared the spatial coverage and likely effectiveness of the baiting program with two alternative (theoretical) baiting strategies. Relative to other baiting programs, coordination among neighbours was reasonably high, with 37.5% of baited properties (n = 40) adjoining ≥3 neighbouring properties that also contained baits. Nevertheless, the maximum distance from the centre of a baited property to the nearest edge of an unbaited property was <750 m (mean = 380 m ± 147 m SD). On average, 33% (±17% SD) of each fox’s home range overlapped with baited properties, but only two foxes died during the baiting program. The remaining four foxes were still alive 10 weeks after baiting ceased. Modelling of simulated fox home ranges showed that 13.5% contained no bait stations based on the community baiting program, whereas alternative roadside‐ and grid‐baiting strategies (theoretically) delivered baits to all simulated home ranges. Some landholders employed practices that could reduce the effectiveness of baiting programs such as not removing decayed baits before deploying new ones or placing bait stations too close together. Our research illustrates the difficulties of managing a coordinated baiting program on private land that effectively controls foxes. Alternative baiting strategies such as roadside baiting need to be considered to improve fox control in agricultural landscapes.  相似文献   

6.
An understanding of the effects of climate on fuel is required to predict future changes to fire. We explored the climatic determinants of variations in surface fine fuel parameters across forests (dry and wet sclerophyll plus rainforest) and grassy woodlands of south‐eastern Australia. Influences of vegetation type and climate on fuel were examined through statistical modelling for estimates of litterfall, decomposition and steady state fine litter fuel load obtained from published studies. Strong relationships were found between climate, vegetation type and all three litter parameters. Litterfall was positively related to mean annual rainfall and mean annual temperature across all vegetation types. Decomposition was both negatively and positively related to mean annual temperature at low and high levels of warm‐season rainfall respectively. Steady state surface fine fuel load was generally, negatively related to mean annual temperature but mean annual rainfall had divergent effects dependent on vegetation type: i.e. positive effect in low productivity dry sclerophyll forests and grassy woodlands versus negative effect in high productivity wet sclerophyll forests and rainforests. The species composition of the vegetation types may have influenced decomposition and steady state fuel load responses in interaction with climate: e.g. lower decomposition rates in the low productivity vegetation types that occupied drier environments may be partially due to the predominance of species with sclerophyllous leaves. The results indicate that uncertain and highly variable future trends in precipitation may have a crucial role in determining the magnitude and direction of change in surface fine fuel load across south‐eastern Australia.  相似文献   

7.
Aim We investigated whether faunas of lentic macroinvertebrates differed among two landscape types: (1) those that are largely covered in forests (presumed to be in a more pre‐human‐impact condition) and (2) those that are completely cleared for agricultural exploitation (massively altered). Location Five pairs of landscapes (each pair referred to as a region) – one of each landscape type – across a 30,000 km2 region of north‐central Victoria, Australia. Methods Each individual waterbody was surveyed three times (austral spring 2006, autumn 2007, and spring 2007) for invertebrates. Waterbodies were characterized by measurements of static (e.g. abutting vegetation cover) and labile (e.g. pH) variables. Data were analysed using hierarchical Bayesian models of species richness, α‐ and β‐diversities and functional feeding groups. Assemblage composition was related to landscape and in‐waterbody characteristics. Results Neither measured, nor asymptotic estimates of, species richness differed among landscape types, notwithstanding consistent differences in in‐waterbody habitat characteristics among waterbodies in the two landscape types. There were no discernible differences in patterns of α‐ and β‐diversities at landscape scales relating to landscape type. Habitat diversity of waterbodies at the landscape scale did not affect β‐diversity, although distinct waterbodies within landscapes tended to have more distinct faunas. Main conclusions The lentic macroinvertebrate faunas are relatively homogeneous over the entire region, with little differentiation between wooded and cleared landscapes. The regional fauna may be a homogenized subset of native species, possibly arising from the huge numerical predominance of lentic habitats in agricultural landscapes producing ‘spill‐over’ effects into forested landscapes. Of taxa more frequently found in one or other landscape type, trophic group diversity was greater in forested landscapes.  相似文献   

8.
Large carnivores can play a pivotal role in maintaining healthy, balanced ecosystems. By suppressing the abundances and hence impacts of herbivores and smaller predators, top predators can indirectly benefit the species consumed by herbivores and smaller predators. Restoring and maintaining the ecosystem services that large carnivores provide has been identified as a critical step required to sustain biodiversity and maintain functional, resilient ecosystems. Recent research has shown that Australia's largest terrestrial predator, the Dingo (Canis lupus dingo), has strong effects on ecosystems in arid Australia and that these effects are beneficial for the conservation of small mammals and vegetation. Similarly, there is evidence from south‐eastern Australia that dingoes suppress the abundance of macropods and red Fox (Vulpes vulpes). It is likely that dingoes in south‐eastern Australia also generate strong indirect effects on the prey of foxes and macropods, as has been observed in the more arid parts of the continent. These direct and indirect effects of dingoes have the potential to be harnessed as passive tools to assist biodiversity conservation through the maintenance of ecologically functional dingo populations. However, research is required to better understand dingoes' indirect effects on ecosystems and the development of dingo management strategies that allow for both the preservation of dingoes and protection of livestock.  相似文献   

9.
Aim This study aims to improve our understanding of the late Cenozoic history of Australian rain forest and sclerophyll biomes by presenting a detailed pollen record demonstrating the floristic composition and orbital‐scale patterns of change in forest communities of upland south‐eastern Australia, during the Early Pleistocene. The record is examined in order to shed light on the nature of the transition from rain forest‐dominated ‘Tertiary’ Australian vegetation to open‐canopied ‘Quaternary’ vegetation. Location Stony Creek Basin (144.13° E, 37.35° S, 550 m a.s.l), a small, infilled palaeolake in the western uplands of Victoria, Australia. Methods A c. 40‐m‐long sediment core was recovered from the infilled palaeolake. Palynology was used to produce a record of changing vegetation through time. Multivariate analyses provided a basis for interpreting the composition of rain forest and sclerophyll forest communities and for identifying changes in these communities over successive insolation cycles. Results Early Pleistocene upland south‐eastern Australian vegetation was characterized by orbital‐scale, cyclic alternation between rain forest and sclerophyll forests. Individual intervals of forest development underwent patterns of sequential taxon expansion that recurred in successive vegetation cycles. Diverse rain forests included a number of angiosperm and gymnosperm taxa now extinct regionally to globally. Sclerophyll forests were also diverse, and occurred under warm and wet climate conditions. Main conclusions The Stony Creek Basin record demonstrates that as recently as c. 1.5 Ma diverse rain forests persisted in southern Australia beyond the modern continental range of rain forest. The importance of conifers in these rain forests emphasizes that they have no modern Australian analogue. Alternation in dominance between these forests and diverse, sclerophyllous open canopied forests was apparently driven by changes in seasonality, and may have been promoted by fire.  相似文献   

10.
Habitat preferences need to be understood if species are to be adequately managed or conserved. Habitat preferences are presumed to reflect requirements for food, shelter and breeding, as well as interactions with predators and competitors. However, one or more of these requirements may dominate. Tree‐cavity‐dependent wildlife species are one example where shelter or breeding site requirements may dominate. We installed 120 nest boxes across 40 sites to target the vulnerable Brush‐tailed Phascogale (Phascogale tapoatafa) and the non‐threatened Sugar Glider (Petaurus breviceps). The provision of shelter sites where few of quality are available may enable better resolution of habitat preferences. Over three years, we observed the Brush‐tailed Phascogale at 17 sites, whereas the Sugar Glider was observed at 39 sites. We tested four broad hypotheses (H1–H4) relating to habitat that may influence occupancy by these species. There was no influence of hollow (cavity) abundance (H1) on either species suggesting our nest boxes had satisfied their shelter requirements. There was no influence of habitat structure (canopy and tree proximity) (H2) immediately around the nest box trees. We found no influence of distance to the forest edge (H3). Variables at and away from the nest box site that appear to reflect foraging substrates (H4) were influential on the Brush‐tailed Phascogale. Sugar Glider occupancy was only influenced by a single variable at the nest box site. The lack of influence of any other variables is consistent with the very high occupancy observed, suggesting most of the forest habitat is suitable when shelter sites are available. We found no evidence that the Sugar Glider reduced site use by the Brush‐tailed Phascogale.  相似文献   

11.
The chick‐provisioning behaviour of the short‐tailed shearwater Puffinus tenuirostris and the wedge‐tailed shearwater Puffinus pacificus was investigated in a mixed colony on Montague Island, New South Wales, Australia, over two breeding seasons. This colony is located at opposite edges of the breeding distribution of the two species. Frequent weighing techniques were used to determine chick feeding frequency, feed timing, meal size, chick weight loss and indices of food conversion efficiency of the chicks. Short‐tailed shearwater parents fed their chicks larger more infrequent meals than wedge‐tailed shearwater parents. Short‐tailed shearwater chicks demonstrated higher food conversion efficiencies and lower weight loss than wedge‐tailed shearwater chicks, indicating either differences in diet or metabolic rates. The feeding frequency in wedge‐tailed shearwaters also fluctuated more widely than for short‐tailed shearwaters over the two breeding seasons. Despite the fact that the timing of the breeding cycle on Montague Island is almost identical for the two species, these differences in chick provisioning are probably a result of differences in prey type and location, so they may help explain variations in annual breeding success and limits to the distribution of the two species.  相似文献   

12.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

13.
A marriage of ecology with agronomy is proving successful in restoring diverse herbaceous layers ‐ to the extent that some reconstructed grasslands on ex‐agricultural land and rural roadsides have been found eligible for federal protection as threatened ecological communities. Can lessons from this improve our management and expansion of grassy ecosystems more broadly?  相似文献   

14.
Over the past decade, there has been a concerted effort to better understand the distribution and abundance of reptiles in agricultural landscapes and to specifically evaluate their response to revegetation (tree and shrub plantings) and habitat restoration in the wheat‐sheep belt of south‐eastern Australia. This article reviews the response of reptiles to revegetation and woodland management and provides ten insights and lessons that can be applied to help improve reptile conservation in temperate eucalypt woodlands and fragmented agricultural landscapes in Australia. The review focuses primarily on revegetation programmes conducted by Landcare and Greening Australia, and management interventions funded by Local Land Services in NSW and Catchment Management Authorities in Victoria.  相似文献   

15.
While the negative impacts of road infrastructure on faunal diversity and abundance have been extensively studied, many traffic noise studies have been conducted in the presence of confounding factors. Therefore, the extent to which traffic noise alone is responsible for impacts is not well known and a better understanding is required to inform urban planning and management decisions. We examined the impact of traffic noise on soundscape patterns at road edges in urban forests. Acoustic sensors were deployed at road and powerline edges, as well as within interior habitat, at three sites in south‐east Queensland, Australia. Powerline edges were included to separate edge effects from traffic noise impacts. We used soundscape power (normalized watts per kHz) of technophony (traffic noise in the 1–2 kHz range) and biophony (animal sounds in the 3–11 kHz range) to investigate soundscape patterns. The results showed that biophony was consistently lower at road edges and was negatively correlated with traffic noise and positively correlated with distance to road edge. Technophony was higher at road edges and was found to correlate negatively with distance to road edge and positively with traffic noise. Technophony and biophony at powerline edges generally exhibited values comparable to interior habitat. These results indicate that traffic noise affects urban forest soundscape patterns at road edges in south‐eastern Australia.  相似文献   

16.
17.
Landscape heterogeneity, from both natural and anthropogenic causes, fundamentally influence the distribution of species. Conservation management requires an understanding of how species respond to heterogeneity at different spatial scales and whether differences may occur between demographic components of a species population. We examined the spatial pattern of activity of the superb lyrebird (Menura novaehollandiae), an iconic forest species of south‐eastern Australia, in the Dandenong Ranges National Park, Victoria. Specifically, we quantified at landscape and local scales, the factors that influence nest site location and foraging activity of lyrebirds. Compared with randomly located sites, nest sites were more likely to occur in wet forest or rainforest close to creek lines; where there were deep litter and complex vegetation in the mid (1.5–2 m) and high (>2 m) strata. Foraging by lyrebirds was more likely to occur in wet forest and rainforest, with increasing distance from creeks; at sites where low vegetative cover (<30 cm) was sparse and the ground layer open. Thus, lyrebirds respond to different cues for different activities (nest sites and foraging), using different resources in the landscape. These results highlight the importance of (i) knowing the range of resources, at both landscape and local scales, required by a species to ensure its persistence and (ii) adopting a landscape approach for conservation planning that incorporates the heterogeneity of the ecosystem, especially that provided by landscape components that may be limited in area but disproportionately valuable for providing habitat resources.  相似文献   

18.
Urban expansion is a major cause of land use change and presents a significant threat to biodiversity worldwide. Agricultural land is often acquired by local councils and developers to expand urban growth boundaries and establish new housing estates. However, many agricultural landscapes support high biodiversity values, especially farmlands that feature mosaics of native vegetation and keystone habitat such as hollow‐bearing trees. In south‐eastern Australia, many arboreal marsupials including the threatened Squirrel Glider (Petaurus norfolcensis) have populations within peri‐urban zones of expanding rural cities. A key challenge to planners, developers and conservation organisations is the need to maintain habitat for locally rare and threatened species as land undergoes changes in management. Critical to the sustainable development of peri‐urban landscapes is a thorough understanding of the distribution, habitat requirements and resources available to maintain and improve habitat for species dependent on limited resources such as tree cavities. In this management report, we present background information on an integrated research programme designed to evaluate potential impacts of urban development on fauna in the Albury Local Government Area, NSW. We mapped hollow‐bearing trees, erected nest boxes and monitored arboreal marsupials. Information presented in this report provides a blueprint for monitoring arboreal marsupials, including threatened species in other developing regions, and will assist the Albury‐Wodonga local governments in future planning of sustainable living environments.  相似文献   

19.
Abstract The impacts of prescribed burning and timber harvesting on species diversity have been the subject of considerable debate. The temporal and spatial scale of these disturbances often presents major limitations to many studies. Here we present the medium‐term results of a planned long‐term study examining the impacts of logging and prescribed burning on the understorey floristic richness in shrubby dry sclerophyll forest in the south‐east of New South Wales, Australia. Generalized estimating equations were used to model the effect of environmental factors and disturbance variables on species richness at the coupe (~30 ha) and plot (~0.01 ha) scale. At the plot scale, fire effects on separate components of the vegetation were broadly consistent with other studies, with frequent fire resulting in a relative increase of species richness for species less than 1 m in height and a decline of larger species taller than this height. At the coupe scale, there was no decline in richness of larger shrub species, possibly owing to the spatial heterogeneity of fire frequency at this scale. Logging resulted in significantly greater species richness in the shrub layer, but had no significant effect on species richness in the ground layer. During the study period, there was a general decline in plant species richness at both coupe and plot scales which occurred independently of imposed management regimes. This is thought to be related to a natural succession following wildfire, and may be due to the absence of high‐intensity fire in the study area since 1973, or to an effect related to season of burning.  相似文献   

20.
One of Australia's leading on‐ground extension officers describes the successes and lessons learned in The Riverina's native revegetation movement over the 20–25 years – but warns of potential failure of current and future Australian revegetation programs if greater funding security is not delivered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号