首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract. The effects of reduction and cessation of sheep grazing on salt‐marsh vegetation were studied on a formerly intensively grazed salt marsh in northern Germany. Plant species cover was recorded in 45 permanent plots from 1992 to 2000. In 1995, physical and chemical soil parameters were analysed. Results of Redundancy Analysis (RDA) indicated that salinity and the depth of anoxic conditions below the surface were the most important soil factors related to the spatial vegetation pattern. Furthermore, plant species distribution was influenced by present and past grazing intensity, by soil grain size and nitrogen content. Vegetation changes over 9 yr were analysed by non‐linear regression. The cover of Aster tripolium, Atriplex portulacoides, and, to a lesser extent, Artemisia maritima and Elymus athericus increased due to reduced grazing pressure, whereas the cover of Salicornia europaea decreased. After a strong increase in the first years Aster decreased 2 to 6 yr after abandonment. In the mid salt‐marsh zone Puccinellia maritima was replaced by Festuca rubra. The cover of Puccinellia, Festuca, Suaeda maritima, Glaux maritima and Salicornia fluctuated strongly, probably due to differences in weather conditions and inundation frequency. Species richness per 4 m2 generally increased while vegetation evenness decreased during the study period. Only in the high salt marsh abandoned for 9 yr did the number of species decrease slightly. Thus far, cessation of grazing did not lead to large‐scale dominance of single plant species.  相似文献   

2.
Abstract. Vegetation succession in three back‐barrier salt marshes in the Wadden Sea was studied using a data set comprising 25 years of vegetation development recorded at permanent quadrats. The effect of livestock grazing on succession was assessed by comparing quadrats where grazing was experimentally prevented or imposed. We studied changes at the species level as well as at the level of the plant community. Special attention is given to effects on plant species richness and community characteristics that are relevant for lagomorphs (hares and rabbits) and geese. Inundation frequency and grazing were most important in explaining the variation in species abundance data. The three marshes studied overlap in the occurrence of different plant communities and the observed patterns were consistent between them. Clear differences in frequency and abundance of plant species were observed related to grazing. Most plant species had a greater incidence in grazed treatments. Species richness increased with elevation, and was 1.5 to 2 × higher in the grazed salt marsh. Grazing negatively influenced Atriplex portulacoides and Elymus athericus, whereas Puccinellia maritima and Festuca rubra showed a positive response. The communities dominated by Elymus athericus, Artemisia maritima and Atriplex portulacoides were restricted to the ungrazed marsh. Communities dominated by Puccinellia maritima, Juncus gerardi and Festuca rubra predominantly occurred at grazed sites. As small vertebrate herbivores prefer these plants and communities for foraging, livestock grazing thus facilitates for them.  相似文献   

3.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

4.
Olof Pehrsson 《Plant Ecology》1988,74(2-3):113-124
During a six-year period, changes in the composition of dominant plant species of importance to foraging birds in a salt marsh on the Swedish west coast were followed inside and outside exclosures to document effects of grazing on herbage quality and seed production. Since marshes provide an important habitat for foraging geese and ducks, it was of interest to determine how cattle grazing would affect herbage production inAgrostis stolonifera andPuccinellia maritima and seed and root-tuber production inScirpus maritimus. Measurements of cover and height in permanent plots revealed that a wetter weather type favouredAgrostis, probably through reduced salinity, at the expense ofPuccinellia, which was the most favoured food of both cattle and birds.Agrostis out-competedPuccinellia when grazing pressure was low. Seed production inScirpus maritimus was reduced by cattle grazing, particularly whenPhragmites australis formed part of the vegetation. In the absence of cattle grazing, both herbage- and seed producing plants were gradually reduced, andPhragmites increased. Since high herbage consumption and high seed production are mutually exclusive, grazing rotation in combination with mowing is suggested as a management strategy.  相似文献   

5.

Naturalistic grazing by large herbivores is an increasingly practiced way of managing habitats with conservational value. It has the potential to restore and enhance biodiversity, creating self-sustainable environments vital for organisms requiring regular disturbances to moderate and/or reverse successional changes. European bison, Exmoor pony, and Tauros cattle were introduced in 2015 to a former military training area in Milovice, Czech Republic. The prevailing vegetation type is a forest-steppe savanna with Bromus erectus-dominated xeric grasslands mixed with deciduous shrubs and trees. After the cessation of military use, the area was abandoned which led to successional changes, including the dominance of tall grasses, litter accumulation, and bush encroachment. In 2017–2021, we monitored grassland vegetation in 30 grazed permanent plots (2?×?2 m) and 5 control plots representative of ungrazed, abandoned vegetation adjacent to the grazed areas. Naturalistic grazing increased species richness and the cover of forbs, while the cover of grasses and legumes was minimally affected. Grazing increased functional diversity of plant community, promoted a compositional change to small statured species and an increased incidence of red-list species. Seven years of continuous grazing increased the conservation value of this forest-steppe vegetation, a habitat type rapidly declining in Europe.

  相似文献   

6.
Abstract. The effects of grazing by cattle and horses on vegetation development were studied in the well‐drained border zone of the Oostvaardersplassen nature reserve, a managed eutrophic wetland in the young Zuidelijk Flevoland polder in The Netherlands. At the start of the study period, 12 yr after the area was enclosed by dykes, the vegetation was dominated by Phragmites australis and tall herbs, particularly Cirsium arvense. Over the next 8 yr, different plant communities developed under different grazing regimes. In all communities, C. arvense was gradually replaced by Urtica dioica, and stands dominated by these two species expanded at the expense of P. australis. The shrub Sambucus nigra invaded the stands of C. arvense and U. dioica. Grazing affected the rate of these developments and the degree to which the grass Poa trivialis became dominant. When cattle were enclosed at a relatively high stocking rate in an area of Phragmites australis and tall herbaceous vegetation during summer, P. trivialis became dominant within 4 yr. The introduction of herbivores led to a faster spread of S. nigra, which contains cyanogenic glycosides which only ruminants can detoxify. Horses, as hind‐gut fermenters, did not feed on S. nigra. Grazing pressure and herbivore species, therefore, are two important variables that can be used to manage the development of Phragmites‐ and shrub vegetation: the greater the grazing pressure by cattle or horses the greater the area dominated by grasses, and a relatively high grazing pressure by cattle will retard S. nigra expansion.  相似文献   

7.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

8.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

9.
以围封保护和自由放牧油蒿草场为研究对象,通过野外调查与室内分析,研究了围封和放牧条件下沙地草场生物量和植被-土壤碳密度。结果表明:(1)自由放牧使油蒿群落中植物种类增加,但降低了植物群落盖度。自由放牧不仅导致油蒿草场地上、地下总生物量降低,也使得油蒿地上、地下生物量占群落地上、地下总生物量的比例减小。生长季自由放牧样地凋落物生物量显著大于围封保护样地(P0.05);(2)围封保护样地植被碳密度大于自由放牧样地,土壤碳密度却小于自由放牧样地,但两个样地间差异不显著(P0.05);(3)油蒿草场90%以上的碳储存于土壤中,围封保护样地和自由放牧样地油蒿草场土壤碳密度占植被-土壤系统碳密度的91%、93%;(4)围封保护油蒿草场碳密度为2.29 kg/m2,自由放牧油蒿草场碳密度为2.68 kg/m2,两个样地间差异不显著,自由放牧对油蒿草场碳密度影响不大。  相似文献   

10.
Changes in rainfall regime and grazing pressure affect vegetation composition and diversity with ecological implications for savannahs. The savannah in East Africa has experienced increased livestock grazing and rainfall variability but the impacts associated with those changes on the herbaceous layer have rarely been documented. We investigated the effect of livestock grazing, rainfall manipulation and their interaction on the composition and diversity of the herbaceous community in the savannah for two years in Lambwe, Kenya. Rainfall manipulation plots were set up for vegetation sampling;these plots received either 50% more or 50% less rainfall than control plots. Simpson’s diversity and Bergere Parker indices were used to determine diversity changes and dominance respectively. The frequency of species was used to compute their abundance and their life forms as determined from the literature. Grazing significantly increased species diversity through suppression of dominant species. Rainfall manipulation had no significant impact on plant diversity in fenced plots, but rainfall reduction significantly reduced diversity in grazed plots. In contrast, rainfall manipulation had no impact on dominance in either fenced or grazed plots. The interaction of grazing and rainfall manipulation is complex and will require additional survey campaigns to create a complete picture of the implications for savannah structure and composition.  相似文献   

11.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

12.
Abstract. Sheep grazing was investigated as an alternative to traditional management of meadows in the Krkono?e Mts. Until the second World War these meadows were mown in mid‐summer and grazed by cattle for the rest of the season. Subsequent abandonment of the meadows has resulted in decreasing species richness. Degradation phases of the former communities have been replacing the original species‐rich vegetation. Significant changes were apparent six years after the introduction of sheep grazing. In grazed plots the proportion of dominant herbs (Polygonum bistorta and Hypericum maculatum) decreased and grasses (Deschampsia cespitosa, Festuca rubra, Agrostis capillaris, Anthoxanthum alpinum) increased. The increase in grasses was positively correlated with an increase in several herbs. The proportion of some herbs increased despite being selectively grazed (Adenostyles alliariae, Melandrium rubrum, Veratrum lobelianum). Any losses caused by grazing of mature plants were probably compensated by successful seedling establishment. Cessation of grazing resulted in significant changes in vegetation within three years. The cover of nitrophilous tall herbs and grasses (e.g. Rumex alpestris, Holcus mollis, Deschampsia cespitosa, Geranium sylvaticum) increased in the abandoned plots. In the plots grazed for nine years cover of species‐rich mountain meadow species increased (e.g. fine‐leaved grasses, Campanula bohemica, Potentilla aurea, Viola lutea, Silene vulgaris). The main conservation risk is the expansion of a competitive species with low palatability, Deschampsia cespitosa. This species can be suppressed by a combination of grazing and mowing. In order for grazing to be effective, the number of sheep should be proportional to meadow production. This may be difficult to maintain as production is variable and is impossible to predict at the beginning of a growing season. A large part of the biomass may thus remain intact in some years. Negative effects of grazing may be, at least partly, eliminated by a combination of cutting and grazing.  相似文献   

13.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

14.
We investigate the persistent soil seed bank composition and its relation to the above-ground flora of grazed and non-grazed sub-Mediterranean deciduous oak forests of NW Greece. Twenty-eight taxa were recorded in the soil seed bank and 83 taxa (70 taxa in plots of seed bank sampling) in the above-ground vegetation. The dominant tree species and many woodland species found in the above-ground vegetation were absent from the soil seed bank. Similarity between the soil seed bank and the above-ground vegetation decreased with grazing, and grazing led to a decrease of species richness in above-ground vegetation and soil seed bank. Beta diversity of vegetation among grazed and among non-grazed plots did not differ, but was significantly higher between grazed and non-grazed areas. Beta diversity of the soil seed bank declined with grazing. When applying classification tree and logistic regression analyses, non-grazed forest sites are clearly differentiated by the presence of Phillyrea latifolia, Euphorbia amygdaloides and Brachypodium sylvaticum. PCA ordination of above-ground species composition reflected a gradient from sites grazed by ruminants to non-grazed sites, but no clear structure was detected in the seed bank.  相似文献   

15.
Changes of pasture communities consequent to management practices resulting from land abandonment considerably affect the structure and function of the ecosystem. This study analyses the consequences of grazing abandonment in terms of plant and soil microbial diversity and fertility, on a Mediterranean upland sheep pasture, over a short period (five years). Grazing was experimentally excluded by fencing ten 10×10 m permanent plots within an area that had supported grazing until 2000, by 0.23 sheep ha?1. Plant and soil microbial communities and physicochemical parameters were monitored within the fenced and unfenced control plots, during three sampling times from 2000 (before the fencing) to 2005. Grazing cessation notably altered the floral composition, with an average dissimilarity of 96.7% between the vegetation communities, over five years. No significant change occurred in the control plots that were grazed throughout the sampling period. This work highlighted that, over a short term, the structural change in the specific plant composition affected only the grass species, confirming that grazing favours the small-sized species over the annual species. Further, it was evident that species groups of conservational and phytogeographic interest, like the endemic and Mediterranean-Atlantic species, tended to disappear with pasture abandonment and were substituted by more widespread species throughout the Mediterranean or even the world. Pasture abandonment was accompanied by an increase of soil pH and a decrease in soil organic matter and soil nitrogen. The microbial parameters recorded at three different sampling times revealed a substantial effect of the plant community, or the time of grazing abandonment, on soil microbial abundance and diversity. Considerable importance is given to the consequences of pasture abandonment on the conservation of plant and microbial diversity and on soil fertility.  相似文献   

16.
Long-term grazing shaped plant diversity in dry Mediterranean grasslands. Abandonment of grazing affects plant diversity especially in the northern Mediterranean. Considerable efforts are, therefore, under way for grassland conservation and restoration. Yet, we do not know at which temporal scales impacts of grazing abandonment appear and in particular how soil seed banks evolve after longer grazing abandonment. Here, we provide detailed data from one of the very few long-term experiments available. These experiments provide data for up to 23 years (1982–2005) of grazing exclusion built in 1982, 1989, 2000 and 2001. Grazing exclusion decreased species richness, modified vegetation structure and changed soil parameters. Decline in species richness appears in communities that experienced 16 and 23 years of grazing exclusion. Only four to nine plant species of this Mediterranean grassland built persistent soil seed banks appearing after grazing exclusion, compared to 40–50 species in the established vegetation of grazed plots. Hence, similarity between vegetation and soil seed bank decreased with time of grazing exclusion. Even 23 years after abandonment, no woody plants colonised the experiments. We conclude that vegetation will recover fast from grazing abandonment in the short-term. Nevertheless, longer abandonment will impact diversity due to reduced soil seed banks.  相似文献   

17.
Question: What are the effects of grazing abandonment on the vegetation composition of Estonian coastal wetlands? Location: Vormsi Island and Silma Nature Reserve in western Estonia, Europe. Methods: Local knowledge and field reconnaissance were used to identify current and historical management levels of wetland sites within the west Estonian study area. Nine study sites, with varying management histories, were selected comprising an area of 287 ha. A total of 198 quadrats were taken from 43 distinct vegetation patches in five of the sites. TWINSPAN analysis was used to identify community type, and a phytosociological key was constructed for character taxa. This vegetation classification was then applied within a GIS‐based context to classify all the study sites, using a ground survey technique and 1:2000 scale air photos. Results: We identified 11 different brackish coastal wetland community types. Indicator species were defined with community characteristics for the seven main vegetation types readily recognisable in the field. Coastal wet grasslands were most extensive in grazed sites, or sites that had been more intensively grazed, while abandoned sites were largely composed of Phragmites australis stands, tall grassland, and scrub. Site variations based on vegetation composition were significantly correlated with past grazing intensity. Plant community types showed significant edaphic differences, with particularly low soil moisture and high conductivity and pH for open pioneer patches compared to other vegetation types. Conclusion: Abandonment of traditionally grazed coastal grasslands threatens their characteristic biodiversity. This study found that grazing abandonment reduced the extent of coastal wetland grasslands of particular conservation value. Nevertheless, plant species of conservation interest were found across the sequence of community types described. The study shows that grazing is an important factor influencing coastal wetland plant communities but suggests that vegetation distribution is affected by environmental variables, such as topography.  相似文献   

18.
Abstract. The biodiversity of species‐rich semi‐natural meadows is declining across Europe due to ceased management. In this study we aimed to find out how successfully the local species richness of an overgrown semi‐natural mesic meadow could be restored by sheep grazing after a long period of abandonment. The cover of vascular plant species in grazed plots and ungrazed exclosures was studied for five years and the responses of different functional plant groups were followed (herbs vs grasses, tall vs short species, species differing in flowering time, species representing different Grime's CSR strategies and species indicative of rich vs poor soil). Grazing increased species number by nearly 30%. On grazed plots the litter cover practically disappeared, favouring small herbs such as Rhinanthus minor, Ranunculus acris, Trifolium pratense and the grass Agrostis capillaris. Grazing decreased the cover of the late flowering tall herb Epilobium angustifolium but had no effect on the abundance of the early flowering tall herbs Anthriscus sylvestris or Geranium sylvaticum. We suggest that to succeed in restoration it is useful to determine the responses of different functional plant groups to grazing. Grassland managers need this information to optimize the methods and timing of management used in restoration. Additional management practices, such as mowing, may be needed in mesic meadows to decrease the dominance of tall species. The availability of propagules seemed to restrict further increase of species richness in our study area.  相似文献   

19.
张艳博  罗鹏  孙庚  牟成香  王志远  吴宁  罗光荣 《生态学报》2012,32(15):4605-4617
为认识放牧对青藏高原东部中生性的高寒草甸草地和半湿生的沼泽草地凋落物分解的影响,在这两种草地上分别设置了围栏和放牧样地,研究了其各自的混合凋落物样品和4个优势物种(发草Deschampsiacaespitos、鹅绒委陵菜Potentilla anserine、木里苔草Carexmuliensis、藏嵩草Kobresiatibetica)凋落物的分解和养分释放动态,这4个优势物种也大致代表了当地沼泽草地生态系统在放牧和气候变暖驱动下逆行演替不同阶段的优势物种类群。结果表明,各优势物种凋落物的分解速率有显著差异;放牧在总体上促进了凋落物的分解,但不同物种的响应有所不同;放牧对凋落物C的释放影响不显著或有抑制作用,但对N、P的释放具有一定促进作用。对各优势物种凋落物分解和养分释放模式的分析表明,群落逆行演替过程中,凋落物分解和C释放加速,可能促进沼泽湿地退化的正反馈效应。草甸草地的退化标志物种鹅绒委陵菜具有较高的凋落物质量和分解速度,反映了中生条件下植物应对牲畜啃食采用"逃避"而非"抵抗"策略的趋向。  相似文献   

20.
Abstract. Wetland vegetation developed in the crater of Mount Usu, northern Japan, soon after the 1977–1978 eruptions which destroyed the vegetation. The cover of each species was measured in 1994 in 118 50 cm × 50 cm plots situated in transects and related to environmental factors (elevation, water depth, soil texture, soil compaction, soil organic matter, and soil pH) to clarify vegetation development. Five vegetation types were recognized dominated by Eleocharis kamtschatica, Equisetum arvense, Lythrum salicaria, Juncus fauriensis and Phragmites australis respectively. Sedge/grass marsh and reed swamp dominated deep-water sites; willow swamp and wet meadow vegetation characterized shallow-water sites, indicating that vegetation zonation developed soon after the eruption. Since those wetland plants were derived neither from seed banks nor from vegetative propagules, they had to immigrate from outside the summit areas. However, except for willows, most species lack the ability for long-distance dispersal. Late successional species, such as P. australis established in the early stages of the primary succession. The water depth varied by 27.5 cm among the plots. Coarse soil particles accumulated, and pH (5.22–6.55) was low on the elevated sites. Organic matter ranged from 2.8 % to 19.1 %, and was high on the elevated sites. Water depth was responsible for the establishment of large-scale vegetation patterns, while edaphic factors, i.e. soil compaction, pH, and organic matter, were determinants of small-scale vegetation patterns. Among the edaphic factors, soil compaction appeared to have a strong influence on vegetation development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号