首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polyamines such as putrescine, spermidine and spermine are ubiquitous aliphatic amines involved in reproductive events in plants and algae, and first become evident through changes in endogenous levels during reproductive development. To examine whether the differences observed in polyamines, during carposporogenesis, in the red alga Grateloupia, followed a specific pattern as is seen in other organisms, infertile axes (i.e. not showing cystocarps) were excised from the same holdfast of female fertilized individuals (i.e. showing cystocarps in other axes), and cultivated until the cystocarps became visible. Changes in the endogenous levels of free putrescine, spermidine and spermine were monitored over the 8 days of culture. The activity of enzymes related to polyamine metabolism, such as l-ornithine decarboxylase (ODC), diamine oxidase and polyamine oxidase, was measured at the beginning and end of the experimental period. Up to 50% of the infertile axes became fertile and produced cystocarps at a density of 1.91 ± 0.1 cystocarps mm−2 after 8 days. The endogenous content of spermine increased markedly over the first 5 days of culture, then decreased to the initial level by day 8. Spermidine followed a similar pattern to spermine, whereas putrescine remained at high levels, until day 5 when it decreased abruptly. The activity of ODC was less on day 8 than on day 0, whereas the activities of diamine oxidase and polyamine oxidase increased. In parallel experiments with explants from infertile axes, exogenously added spermine (10−6 M) increased the number of cystocarps, and reversed the effect of cyclohexylamine (CHA), which is known to inhibit polyamine synthesis in Grateloupia. Serial sectioning and microscopic observation of specimens from explants cultivated in 10−6 M spermine indicated that cystocarp development was induced. The results suggest that, during transition from infertile to fertile spermine is accumulated, thus favouring the development of cystocarps, given the presumed role of spermine as an inducing agent.  相似文献   

2.
The profile of free and conjugated polyamines putrescine, spermidine, and spermine was studied at the onset of sprouting and during various stages of vegetative growth in saffron (Crocus sativus L.) corms. Polyamines were extracted from the shoot meristems and estimated by high performance liquid chromatography. Free putrescine was not detected at the onset of sprouting, whereas free spermidine and spermine levels increased rapidly on sprouting and decreased during further stages of corm development. The levels of conjugated polyamines were several times higher than the free forms indicating their possible role in the developmental processes. A comparison of polyamine levels of vegetative and floral corms showed higher titers of free polyamines in vegetative and conjugated polyamines in floral corms.  相似文献   

3.
Summary The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different developmental stages, grown in the embryo development and maturation media for various lengths of time, were separated from the associated subtending tissue (embryogenic and the suspensor cell masses) and analyzed for their polyamine content as well as for polyamine biosynthetic enzyme activities. Polyamine content was also analyzed in embryos representing different stages of developmentthat were collected from the sam culture plate at the same time and the subtending tissue surrouding them. Putrescine was the predominant polyamine in the pro-embryogenic tissue, while spermidine was predominant during embryo development. Significant changes in spermidine/putrescine and spermine/putrescine ratios were observed at all stages of embryo development as compared to the pro-embryogenic cell mass. Changes in the ratios of various polyamines were clearly correlated with the developmental stage of the embryo rather than the period of growth in the maturation medium. Whereas the activities of both ornithine decarboxylase and arginine decarboxylase increased by week 3 or 4 and stayed high during the subsequent 6 wk of growth, the activity of S-adenosylmethionine decarboxylase steadily declined during embryo development.  相似文献   

4.
The three major polyamines—putrescine, spermidine, and spermine—were studied and changes of their levels were examined in extracts of cerebral ganglia and fat body from adult Acheta domesticus. In nervous tissue, only spermidine and spermine were present and spermine was two- to three-fold more abundant than spermidine. The polyamine levels were high up to day 3, decreased on day 4, and then remained relatively unchanged up to day 10. The spermidine/spermine ratios decreased during the imaginal life. Higher spermidine titres were observed in the neural tissue of egg-laying females compared to virgin females. In the fat body, putrescine was detected together with spermidine and spermine. Spermidine and spermine levels were two-fold higher than putrescine. Fat body of virgin females contained two times more polyamines than male fat body. Low at emergence, spermidine and spermine concentrations peaked on days 2–3 only in females, and egg-laying was characterized by an increase of putrescine and spermidine titres. Starvation did not change polyamine contents, implying homeostatic regulation of the intracellular polyamine metabolism. These data showing tissue specific changes in polyamine levels during the imaginal life of Acheta domesticus point to the physiological importance of polyamines as possible intracellular regulators during adult insect development. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Changes in polyamine content during in vivo maturation and in vitro culture of maize (Zea mays L.) pollen were studied. The endogenous content of free, conjugated and bound polyamines was analyzed during 30 days of pollen evolution, in both developmental pathways (microsporogenesis and androgenesis). The induction of androgenesis from cold-pretreated uninucleate pollen results, in most of cases, in a lower total polyamine content than that of the in vivo uninucleate pollen. These differences indicate that polyamine metabolism is altered during the induction of androgenesis, and this could be a consequence of increased polyamine assimilation. In general, pollen stages that involve cell division (tetrades, pre-anthesis pollen and four-day cultured pollen) are characterized by a predominance of free Spd. The increase of Spd and Spm in 15-day cultured pollen, when the first embryoids are formed, outline the possible implication of these polyamines in embryogenetic processes. Furthermore, these findings may contribute to the improvement of maize androgenesis yield, especially in recalcitrant genotypes, by the exogenous application of polyamines or polyamine-inhibitors to the culture medium.Abbreviations PAs polyamines - Put putrescine - Spd spermidine - Spm spermine - S free polyamine fraction - SH conjugated polyamine fraction - PH bound polyamine fraction  相似文献   

6.
7.
R. Goldberg  E. Perdrizet 《Planta》1984,161(6):531-535
Free- and bound-polyamine levels were estimated in successive segments of the mung-bean hypocotyl. Three aliphatic polyamines (putrescine, spermidine and spermine) were found in proportions which depended on the state of maturation. In young cells, most of the polyamines were located in the protoplasm whereas in older cells they were mostly bound to the cell walls. Spermidine was always the main bound polyamine, and putrescine, the main free polyamine.Abbreviation EDTA ethylenediaminetetraacetic acid  相似文献   

8.
Free polyamine contents and expressions of five genes encoding for polyamine biosynthetic enzymes were investigated at four different stages during peach (Prunus persica L. Batsch cv. Akatsuki) flower development. Fresh mass of peach flowers increased, accompanied by reduction in contents of total polyamines and putrescine/spermidine ratio due to decrease in putrescine content. Spermidine, the largest fraction, and spermine, the least part, underwent minor change. Expressions of the five key genes involved in polyamine biosynthesis during flower development did not parallel the changes in free polyamines.  相似文献   

9.
10.
This is the first report correlating levels of polyamines and its fractions with differentiation in Dictyostelium discoideum. Temporal changes in endogenous levels of free, conjugated and bound putrescine, spermidine and spermine were analysed at critical stages of morphogenesis in this organism. No spermine was found at any given stage and putrescine was the most abundant polyamine. There was a sharp increase in the levels of both free (and total) and conjugated forms of putrescine and spermidine at the slug stage as compared to the growth phase. The levels of putrescine and spermidine were found to be higher in isolated prespore cells as compared to the prestalk cells. Remarkably, the levels of polyamine decreased at the early culminant stage. Data suggest that a moderate level of polyamines is needed for growth but it is important to have high levels of polyamines at the time of differentiation.  相似文献   

11.
Increased blood polyamine levels, often observed in cancer patients, have negative impacts on patient prognosis and are associated with tumor progression. The purpose of our study was to examine the effects of polyamines on cellular immune function. Peripheral blood mononuclear cells (PBMCs) from healthy volunteers were cultured with the human natural polyamines spermine, spermidine, or putrescine, and the effects on immune cell function were examined. The correlation between post-operative changes in blood polyamine levels and lymphokine-activated killer (LAK) activity was also examined in cancer patients. Spermine decreased the adhesion of non-stimulated PBMCs to tissue culture plastic in a dose- and a time-dependent manner without affecting cell viability or activity. This decrease in adhesion capacity was accompanied by a decrease in the number of CD11a bright-positive and CD56 bright-positive cells. Upon stimulation with interleukin 2 to activate LAK cytotoxicity, PBMCs cultured overnight with 100 or 500 μM spermine showed decreased cytotoxic activity against Daudi cells (91.5 ± 1.7 and 84.9 ± 3.0%, respectively (n = 6) compared to PBMC cultured without polyamines). In a group of 25 cancer patients, changes in blood spermine levels after surgery were negatively correlated with changes in LAK cytotoxicity after surgery (r = −0.510, P = 0.008: n = 25). Increased blood spermine levels may be an important factor in the suppression of anti-tumor immune cell function.  相似文献   

12.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

13.
Polyamines are essential compounds for growth and development in plants. An attempt has been made to find out the endogenous polyamine profiles in various parts and during the ontogeny of fruit formation of two commercially important Coffea species viz., arabica and canephora. Putrescine (Put), spermine (Spm) and spermidine (Spd) are the predominant polyamines during the ontogeny of fruit and their level increased with the advancement of fruit development. However, in the initial stages of flower and fruit development Spm levels were found to be decreased. Elevated levels of major polyamines Put, Spd, and Spm were observed in zygotic embryos than in somatic embryos. Along with this cadavarine (Cad) and other biogenic amines viz., tyramine (Tyr) and tryptamine (Try) were also found during the ontogeny of fruit in C. canephora. In this study the enodogenous polyamine profiles in coffee tissues and beans have been addressed.  相似文献   

14.
The leaves of four reed ecotypes (Phragmites communis Trinius) growing in the desert regions of northwest China were investigated for levels of polyamines and activity of arginine decarboxylase (ADC; EC 4.1.1.19) during the growing season of 5 months. The polyamines in the leaves of all reed ecotypes consisted of putrescine, spermidine and spermine. The polyamine levels of the leaves were lower in the swamp reed than in the terrestrial reed ecotypes. Leaf polyamine levels decreased in all ecotypes over the course of the season. Compared to the swamp reed, the terrestrial reed ecotypes maintained higher ADC activity and a predominance of spermine, resulting in a lower ratio of putrescine to spermidine and spermine. It seems that the adaptation of reed plants to drought and saline habitats may be correlated with putrescine synthesis via the ADC pathway, and with a successful conversion of putrescine to spermidine and spermine.  相似文献   

15.
The metabolism of the polyamine precursors arginine and ornithine was studied in maturing and vernalised seeds of Picea abies (L.) Karst. (Norway spruce) in feeding experiments. Incorporation of radioactivity from these 14 C-labelled amino acids into liberated CO2, amino acids, polyamines, proteins and cell wall fractions, as well as polyamine levels were determined in embryos and megagametophytes. Ornithine and especially arginine decarboxylation was more active in the embryo than in the megagametophytic cells, and vernalisation increased arginine metabolism more than it increased ornithine metabolism. Both precursors were metabolised to each other, to other amino acids, and to polyamines. The only polyamine in which radioactivity incorporated was free putrescine, showing either a slow synthesis or a high degradation rate of spermidine and spermine in maturing spruce seeds. The putrescine level was approximately 10 times higher in the embryo than in the megagametophytic tissues, whereas spermidine and spermine levels were almost the same in both tissues. The label from arginine and ornithine was also incorporated into proteins as amino acids and post-translationally as polyamines. Higher radioactivity was seen in the small ≤14-kDa polypeptides. Protein hydrolysates of the embryo and the megagametophytic tissues contained spermidine and spermine and their degradation product 1,3-diaminopropane (DAP), suggesting that polyamines may play a role in the accumulation of seed storage protein and in the maturation of spruce seeds.  相似文献   

16.
A study of the polyamine profile was carried out during zygotic embryo development in Prunus avium. Zygotic embryos were collected from 2 donor trees and sorted into 3 size classes: C1 [2.5 to 3.5 mm]; C2 [3.6 to 4.5 mm] and C3 [5.5 to 7 mm]. Evolution of the various polyamines was similar for the two donor trees. Changes in the relative amount of the various free polyamines were observed during zygotic embryo development. Agmatine and spermine levels increased from C1 to C3. Spermidine, the predominant polyamine, showed a two-fold decrease in C3 compared with C1 and C2; the evolution of putrescine was opposed, showing an increase in the last developmental stage. The putrescine/spermidine ratio could be a marker for these 3 developmental stages with a higher ratio in C3 compared with C1 and C2. Polyamine changes in cotyledons from class C1 were investigated during in vitro culture. A 10-day induction on a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin caused a strong decline in free spermidine levels and a dramatic increase in free putrescine. The formation of conjugated putrescine occurred simultaneously, and twenty days after removal of growth regulators, the various polyamine contents were still at the same level.Abbreviations Agm agmatine - Dap diaminopropane - 2,4-D 2,4-dichlorophenoxyacetic acid - Put putrescine - Spd spermidine - Spm spermine  相似文献   

17.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

18.
Changes in the concentrations of endogenous free, conjugated and bound polyamine were determined in petals of two different species of rose, viz. Rosa damascena and Rosa bourboniana, from small bud (stage 1) till full bloom (stage 8). High free putrescine and spermidine concentrations were associated with early stages of flower development and then decreased in R. damascena. At full bloom, the concentration of free putrescine was higher than rest of the polyamines measured. A steady increase in conjugated putrescine, spermidine and spermine was observed during entire period of flower development with predominance of conjugated putrescine at full bloom. In R. damascena the bound spermine was higher than rest of the polyamines during full bloom. In R. bourboniana, during the early stages of flower development, similar situation was observed, however, at full bloom, free spermidine concentration was higher than rest of the polyamines. In this species, the concentration of conjugated and bound spermine was higher than rest of the polyamines during full bloom. Polyamine concentrations were generally lower in the petals of R. bourboniana than R. damascena which may be due to genotypic differences. The possible roles of the observed polyamines are discussed in relation to flower development.IHBT Communication no, 0345.  相似文献   

19.
Ionic interactions are essential for the biological functions of the polyamines spermidine and spermine in mammalian physiology. Here, we describe a simple gram scale method to prepare 1,12-diamino-3,6,9-triazadodecane (SpmTrien), an isosteric charge-deficient spermine analogue. The protonation sites of SpmTrien were determined at pH range of 2.2–11.0 using two-dimensional 1H-15N NMR spectroscopy, which proved to be more feasible than conventional methods. The macroscopic pK a values of SpmTrien (3.3, 6.3, 8.5, 9.5 and 10.3) are significantly lower than those of 1,12-diamino-4,9-diazadodecane (spermine). The effects of SpmTrien and its parent molecule, 1,8-diamino-3,6-diazaoctane (Trien), on cell growth and polyamine metabolism were investigated in DU145 prostate carcinoma cells. SpmTrien downregulated the biosynthetic enzymes ornithine decarboxylase (ODC) and S-adenosyl-l-methionine decarboxylase and decreased intracellular polyamine levels, whereas the effects of Trien alone were minor. Interestingly, both SpmTrien and Trien were able to partially overcome growth arrest induced by an ODC inhibitor, α-difluoromethylornithine, indicating that they are able to mimic some functions of the natural polyamines. Thus, SpmTrien is a novel tool to influence polyamine interaction sites at the molecular level and offers a new means to study the contribution of the protonation of spermine amino group(s) in the regulation of polyamine-dependent biological processes.  相似文献   

20.
The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal β-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal β-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号