首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatial variation in habitat quality and anthropogenic factors, as well as social structure, can lead to spatially structured populations of animals. Demographic approaches can be used to improve our understanding of the dynamics of spatially structured populations and help identify subpopulations critical for the long-term persistence of regional metapopulations. We provide a regional metapopulation analysis to inform conservation management for Masai giraffes (Giraffa camelopardalis tippelskirchi) in five subpopulations defined by land management designations. We used data from an individual-based mark–recapture study to estimate subpopulation sizes, subpopulation growth rates, and movement probabilities among subpopulations. We assessed the source–sink structure of the study population by calculating source–sink statistics, and we created a female-based matrix metapopulation model composed of all subpopulations to examine how variation in demographic components of survival, reproduction, and movement affected metapopulation growth rate. Movement data indicated no subpopulation was completely isolated, but movement probabilities varied among subpopulations. Source–sink statistics and net flow of individuals indicated three subpopulations were sources, while two subpopulations were sinks. We found areas with higher wildlife protection efforts and fewer anthropogenic impacts were sources, and less-protected areas were identified as sinks. Our results highlight the importance of identifying source–sink dynamics among subpopulations for effective conservation planning and emphasize how protected areas can play an important role in sustaining metapopulations.  相似文献   

2.
We describe simulation models for metapopulations of individual‐based random walk populations with local dispersal on a coupled map lattice. The models were used to assess the factors determining persistence time, in particular the incidence of density‐dependence required for long‐term persistence of a temporally and spatially stochastic metapopulation, the extent of persistence possible in the absence of density‐dependence, and the factors that affect this.
Metapopulation persistence depended on the overall rate of increase of the metapopulation mean. This was maximised by (in order of importance) high mean and variance in the local rate of increase, high dispersal rates (20% or more of individuals dispersing each generation), large lattice size, and large dispersal range (to at least 24 neighbouring subpopulations).
With density‐dependence, the emergent dynamics of the metapopulation mean following global perturbation (reduction in density) resembled those of the logistic growth model. However, the overall metapopulation rate of increase and equilibrium level bore no resemblance to those of the subpopulations: rate of increase was higher (negative mean local rates of increase may give positive overall growth), and equilibrium mean metapopulation density was well below the local carrying capacity. This highlights the need to sample populations at an appropriate scale when seeking to understand regulatory mechanisms.
Metapopulations with the strongest tendency to grow gave the highest equilibrium mean density, the highest incidence of density‐dependence, and the longest persistence time. However, long‐term persistence with low average density and very low incidence of density‐dependence was possible on a sufficiently large lattice. For example, with 40×40 subpopulations, mean metapopulation persistence time was around 104 generations, with mean subpopulation size of 2% of the carrying capacity, and local density‐dependence acting just once every 2500 generations on average. Metapopulation processes may explain our inability to detect density‐dependence in many real populations, and may also play an important part in the persistence of rare species.  相似文献   

3.
《Acta Oecologica》2007,31(1):60-68
Habitat destruction and fragmentation severely affected the Atlantic Forest. Formerly contiguous populations may become subdivided into a larger number of smaller populations, threatening their long-term persistence. The computer package VORTEX was used to simulate the consequences of habitat fragmentation and population subdivision on Micoureus paraguayanus, an endemic arboreal marsupial of the Atlantic Forest. Scenarios simulated hypothetical populations of 100 and 2000 animals being partitioned into 1–10 populations, linked by varying rates of inter-patch dispersal, and also evaluated male-biased dispersal. Results demonstrated that a single population was more stable than an ensemble of populations of equal size, irrespective of dispersal rate. Small populations (10–20 individuals) exhibited high instability due to demographic stochasticity, and were characterized by high rates of extinction, smaller values for metapopulation growth and larger fluctuations in population size and growth rate. Dispersal effects on metapopulation persistence were related to the size of the populations and to the sexes that were capable of dispersing. Male-biased dispersal had no noticeable effects on metapopulation extinction dynamics, whereas scenarios modelling dispersal by both sexes positively affected metapopulation dynamics through higher growth rates, smaller fluctuations in growth rate, larger final metapopulation sizes and lower probabilities of extinction. The present study highlights the complex relationships between metapopulation size, population subdivision, habitat fragmentation, rate of inter-patch dispersal and sex-biased dispersal and indicates the importance of gaining a better understanding of dispersal and its interactions with correlations between disturbance events.  相似文献   

4.
Transgenes may spread from crops into the environment via the establishment of feral populations, often initiated by seed spill from transport lorries or farm machinery. Locally, such populations are often subject to large environmental variability and usually do not persist longer than a few years. Because secondary feral populations may arise from seed dispersal to adjacent sites, the dynamics of such populations should be studied in a metapopulation context. We study a structured metapopulation model with local dispersal, mimicking a string of roadside subpopulations of a feral crop. Population growth is assumed to be subject to local disturbances, introducing spatially random environmental stochasticity. Our aim is to understand the role of dispersal and environmental variability in the dynamics of such ephemeral populations. We determine the effect of dispersal on the extinction boundary and on the distribution of persistence times, and investigate the influence of spatially correlated disturbances as opposed to spatially random disturbances. We find that, given spatially random disturbances, dispersal slows down the decline of the metapopulation and results in the occurrence of long-lasting local populations which remain more or less static in space. We identify which life history traits, if changed by genetic modification, have the largest impact on the population growth rate and persistence times. For oilseed rape, these are seed bank survival and dormancy. Combining our findings with literature data on transgene-induced life history changes, we predict that persistence is promoted by transgenes for oil-modifications (high stearate or high laurate) and, possibly, for insect resistence (Bt). Transgenic tolerance to glufosinate herbicide is predicted to reduce persistence.  相似文献   

5.
Continuous colonization and re-colonization is critical for survival of insect species living in temporary habitats. When insect populations in temporary habitats are depleted, some species may escape extinction by surviving in permanent, but less suitable habitats, in which long-term population survival can be maintained only by immigration from other populations. Such situation has been repeatedly described in nature, but conditions when and how this occurs and how important this phenomenon is for insect metapopulation survival are still poorly known, mainly because it is difficult to study experimentally. Therefore, we used a simulation model to investigate, how environmental stochasticity, growth rate and the incidence of dispersal affect the positive effect of permanent but poor (“sink”) habitats on the likelihood of metapopulation persistence in a network of high quality but temporary (“source”) habitats. This model revealed that permanent habitats substantially increase the probability of metapopulation persistence of insect species with poor dispersal ability if the availability of temporary habitats is spatio-temporally synchronized. Addition of permanent habitats to a system sometimes enabled metapopulation persistence even in cases in which the metapopulation would otherwise go extinct, especially for species with high growth rates. For insect species with low growth rates the probability of a metapopulation persistence strongly depended on the proportions of “source” to “source” and “sink” to “source” dispersal rates.  相似文献   

6.
Gösta Nachman 《Oikos》2000,91(1):51-65
An analytical stochastic metapopulation model is developed. It describes how individuals will be distributed among patches as a function of density-dependent birth, death and emigration rates, and the probability of successful dispersal. The model includes demographic stochasticity, but not catastrophes, environmental stochasticity or variation in patch size and suitability. All patches are equally likely to be colonized by migrants. The model predicts: (a) mean and variance of the number of individuals per patch; (b) probability distribution of individuals per patch; (c) mean number of individuals in transit; and (d) turn-over rate and expected persistence time of a single patch. The model shows that (a) dispersal rates must be intermediate in order to ensure metapopulation persistence; (b) the mean number of individuals per patch is often well below the carrying capacity; (c) long transit times and/or high mortality during dispersal reduce the mean number of individuals per patch; (d) density-dependent emigration responses will usually increase metapopulation size and persistence compared with density-independent dispersal; (e) an increase in the per capita net growth rate can both increase and decrease metapopulation size and persistence depending on whether dispersal rates are high or low; (f) density-independent birth, death, and emigration rates lead to a spatial pattern described by the negative binomial distribution.  相似文献   

7.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.  相似文献   

8.
Habitat destruction is a critical factor that affects persistence in several taxa, including Pacific salmon. Salmon are noted for their ability to home to their natal streams for reproduction. Since straying (i.e., spawners reproducing in nonnatal streams) is typically low in salmon, its effects have not been appreciated. In this article, we develop both a general analytical model and a simple simulation model describing structured metapopulations to study how weak connections between subpopulations affect the ability of a species to tolerate habitat destruction and/or declines in habitat quality. Our goals are to develop general principles and to relate these principles to salmon population dynamics. The analytical model describes the dynamics of two density-dependent subpopulations, connected by dispersal, whose growth rates fluctuate in response to environmental and demographic stochasticity. We find that, for moderate levels of environmental variability, small dispersal rates can significantly increase mean extinction times. This effect declines with increasing habitat quality, increasing temporal correlation, and increasing spatial correlation, but it is still significant for realistic parameter values. The simulation model shows there is a threshold rate of dispersal that minimizes extinction probabilities. These results cannot be seen in classical metapopulation models and provide new insights into the rescue effect.  相似文献   

9.
Previous models have predicted that when mortality increases with age, older individuals should invest more of their resources in reproduction and produce less dispersive offspring, as both their future reproductive value and their prospect of competing with their own sib decline. Those models assumed stable population sizes. We here study for the first time the evolution of age‐specific reproductive effort and of age‐specific offspring dispersal rate in a metapopulation with extinction‐recolonization dynamics and juvenile dispersal. Our model explores the evolutionary consequences of disequilibrium in the age structure of individuals in local populations, generated by disturbances. Life‐history decisions are then shaped both by changes with age in individual performances, and by changes in ecological conditions, as young and old individuals do not live on average in the same environments. Lower juvenile dispersal favours the evolution of higher reproductive effort in young adults in a metapopulation with extinction‐recolonization compared with a well‐mixed population. Contrary to previous predictions for stable structured populations, we find that offspring dispersal should generally increase with maternal age. This is because young individuals, who are overrepresented in recently colonized populations, should allocate more to reproduction and less to dispersal as a strategy to exploit abundant recruitment opportunities in such populations.  相似文献   

10.
Body condition‐dependent dispersal strategies are common in nature. Although it is obvious that environmental constraints may induce a positive relationship between body condition and dispersal, it is not clear whether positive body conditional dispersal strategies may evolve as a strategy in metapopulations. We have developed an individual‐based simulation model to investigate how body condition–dispersal reaction norms evolve in metapopulations that are characterized by different levels of environmental stochasticity and dispersal mortality. In the model, body condition is related to fecundity and determined either by environmental conditions during juvenile development (adult dispersal) or by those experienced by the mother (natal dispersal). Evolutionarily stable reaction norms strongly depend on metapopulation conditions: positive body condition dependency of dispersal evolved in metapopulation conditions with low levels of dispersal mortality and high levels of environmental stochasticity. Negative body condition‐dependent dispersal evolved in metapopulations with high dispersal mortality and low environmental stochasticity. The latter strategy is responsible for higher dispersal rates under kin competition when dispersal decisions are based on body condition reached at the adult life stage. The evolution of both positive and negative body condition‐dependent dispersal strategies is consequently likely in metapopulations and depends on the prevalent environmental conditions.  相似文献   

11.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

12.
We examined a remnant host plant ( Primula veris L.) habitat network that was last inhabited by the rare butterfly Hamearis lucina L. in north Wales in 1943, to assess the relative contribution of several spatial parameters to its regional extinction. We first examined relationships between P. veris characteristics and H. lucina eggs in surviving H. lucina populations, and used these to predict the suitability and potential carrying capacity of the habitat network in north Wales. This resulted in an estimate of roughly 4500 eggs (ca 227 adults). We developed a discrete space, discrete time metapopulation model to evaluate the relative contribution of dispersal distance, habitat and environmental stochasticity as possible causes of extinction. We simulated the potential persistence of the butterfly in the current network as well as in three artificial (historical and present) habitat networks that differed in the quantity (current and X3) and fragmentation of the habitat (current and aggregated). We identified that reduced habitat quantity and increased isolation would have increased the probability of regional extinction, in conjunction with environmental stochasticity and H. lucina 's dispersal distance. This general trend did not change in a qualitative manner when we modified the ability of dispersing females to stay in, and find suitable habitats (by changing the size of the grid cells used in the model). Contrary to most metapopulation model predictions, system persistence declined with increasing migration rate, suggesting that the mortality of migrating individuals in fragmented landscapes may pose significant risks to system-wide persistence. Based on model predictions for the present landscape we argue that a major programme of habitat restoration would be required for a re-established metapopulation to persist for >100 years.  相似文献   

13.
The persistence of a spatially structured population is determined by the rate of dispersal among habitat patches. If the local dynamic at the subpopulation level is extinction-prone, the system viability is maximal at intermediate connectivity where recolonization is allowed, but full synchronization that enables correlated extinction is forbidden. Here we developed and used an algorithm for agent-based simulations in order to study the persistence of a stochastic metapopulation. The effect of noise is shown to be dramatic, and the dynamics of the spatial population differs substantially from the predictions of deterministic models. This has been validated for the stochastic versions of the logistic map, the Ricker map and the Nicholson-Bailey host-parasitoid system. To analyze the possibility of extinction, previous studies were focused on the attractiveness (Lyapunov exponent) of stable solutions and the structure of their basin of attraction (dependence on initial population size). Our results suggest that these features are of secondary importance in the presence of stochasticity. Instead, optimal sustainability is achieved when decoherence is maximal. Individual-based simulations of metapopulations of different sizes, dimensions and noise types, show that the system''s lifetime peaks when it displays checkerboard spatial patterns. This conclusion is supported by the results of a recently published Drosophila experiment. The checkerboard strategy provides a technique for the manipulation of migration rates (e.g., by constructing corridors) in order to affect the persistence of a metapopulation. It may be used in order to minimize the risk of extinction of an endangered species, or to maximize the efficiency of an eradication campaign.  相似文献   

14.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

15.
Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population‐years. Using that model, 50‐year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early‐successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long‐term persistence of C. pitcheri in Indiana likely to depend on continued active management.  相似文献   

16.
A central goal of metapopulation ecology is to determine which subpopulations have the greatest value to the larger metapopulation. That is, where are the ‘sources’ that are most essential to persistence? This question is especially relevant to benthic marine systems, where dispersal and recruitment are greatly affected by oceanographic processes. In a single‐species context, theoretical models typically identify ‘hotspots’ with high recruitment, especially high self‐recruitment, as having the highest value. However, the oceanographic forces affecting larval delivery of a given species may also influence the recruitment of that species’ predators, prey, and competitors.We present evidence from the Virgin Islands and Bahamas that oceanographic forces produce spatial coupling between the recruitment of planktivorous fishes, the recruitment of their predators, and the productivity of their zooplankton prey. We examined the consequences of this type of multi‐trophic coupling using a simple analytical population model and a multispecies numerical simulation model with parameter values based on the Virgin Islands system. In both analyses, strong coupling caused planktivores at the highest recruitment sites to experience higher mortality (a consequence of higher predator densities) but faster growth and higher fecundity (a consequence of higher zooplankton densities) than planktivores at low recruitment sites. As such, the relative strength of oceanographic coupling between the three trophic levels strongly determined whether a particular reef acted as a source or sink. In the simulation model, density‐dependent competition for zooplankton limited overall metapopulation biomass more severely than predation, so oceanographic coupling between planktivore larval supply and zooplankton productivity had a stronger effect on the metapopulation value of a patch. We argue that the potential for such tri‐trophic coupling should be incorporated into future metacommunity models and has considerable implications for the design and evaluation of marine reserves.  相似文献   

17.
Although it is well‐known that dispersal of organisms within a metacommunity will influence patterns of coexistence and richness, theoretical and experimental studies generally assume that dispersal rates are constant through time. However, dispersal is often a highly variable process that can vary seasonally and/or when stochastic events (e.g. wind storms, droughts, floods) occur. Using a well‐known source–sink metacommunity model, we present novel predictions for local and regional species richness when stochasticity in dispersal is expressly considered. We demonstrate that dispersal stochasticity alters some of the predictions obtained with constant dispersal; the peak of the predicted hump‐shaped relationship between dispersal and local species richness is diminished and shifted towards higher values of dispersal. Dispersal stochasticity increases extinction probabilities of inferior competitor species particularly in metacommunities subjected to severe isolation events (i.e. decreases of dispersal) or homogenization events (i.e. sudden increases of dispersal). Our results emphasize how incorporating dispersal stochasticity into theoretical predictions will broaden our understanding of metacommunities dynamics and their responses to natural and human‐related disturbances.  相似文献   

18.
Defining computable analytical measures of the effects of selection in populations with demographic and environmental stochasticity is a long-standing problem. We derive an analytical measure which takes in account all consequences of the discrete nature of deme size. Expressions of this measure are detailed for infinite island models of population structure. As an illustration we consider the evolution of dispersal in populations made of small demes with environmental and demographic stochasticity. We confirm some results obtained from the analysis of models based on deterministic approximations. In particular, when there is an Allee effect, we show that evolution of the dispersal rate may lead the metapopulation to extinction. Thus, selection on the dispersal rate could restrict the distribution of species subject to Allee effects. This selection-driven extinction is prevented by kin selection when the environmental extinction rate is small.  相似文献   

19.
In terrestrial plants the segregation of male and female reproductions on different individuals results in the seed-shadow handicap: males do not disperse any seed so that the number of local patches reached by seeds is potentially reduced in dioecious populations in comparison to hermaphrodite populations. An analytical model, incorporating a lottery-based recruitment and dispersal stochasticity, was built. The spatially mediated cost of the seed-shadow handicap has been assessed considering the criterions for the invasion of a resident hermaphrodite species by a dioecious species and the reverse invasion, both species having the same demographic parameters but assuming a likely higher fecundity for dioecious females. The reciprocal invasion of a dioecious and hermaphrodite species differing only by their fecundity is never possible. The seed-shadow handicap disappears when the dispersal or survival rate is high enough. This latter point is due to dispersal stochasticity, which allows for the existence of empty patches. A low fecundity and an aggregated seed distribution increase dispersal stochasticity and increase the positive impact of a low mortality rate on the relative competitivity of dioecy and hermaphroditism. Adding a dispersal cost has a comparable effect but also requires higher dispersal rates for the dioecious invasion.  相似文献   

20.
With the interest in conservation biology shifting towards processes from patterns, and to populations from communities, the theory of metapopulation dynamics is replacing the equilibrium theory of island biogeography as the population ecology paradigm in conservation biology. The simplest models of metapopulation dynamics make predictions about the effects of habitat fragmentation - size and isolation of habitat patches - on metapopulation persistence. The simple models may be enriched by considerations of the effects of demographic and environmental stochasticity on the size and extinction probability of local populations. Environmental stochasticity affects populations at two levels: it makes local extinctions more probable, and it also decreases metapopulation persistence time by increasing the correlation of extinction events across populations. Some controversy has arisen over the significance of correlated extinctions, and how they may affect the optimal subdivision of metapopulations to maximize their persistence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号