首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite use of excellent molecular techniques, Litaker et al. (2002) cannot provide insights about the life history of toxic Pfiesteria piscicida because they showed no data in support of having used toxic strains; rather they presented evidence that they used non‐inducible strains. Litaker et al. did not find amoeboid stages or a chrysophyte‐like cyst stage in several cultures and unequivocally concluded that the stages do not exist in all P. piscicida strains. Thus, they did not consider the tenet that absence of evidence does not constitute proof of absence. Apparent discrepancies between the research by Litaker et al. and previous research on Pfiesteria can be resolved as follows: First, Litaker et al. did not use toxic strains. We have reported findings (similar to Litaker et al.) showing few amoeboid transformations in non‐inducible strains, which manifest some but not all of the forms that have been documented in some toxic strains. We, and others, have documented active toxicity to fish, transformations to amoebae, and chrysophyte‐like cysts in some clonal toxic strains. Second, the data from several recent publications, which were available but not mentioned by Litaker et al. or by Coats (2002) in accompanying commentary, have verified P. piscicida amoebae, chrysophyte‐like cysts, and other stages in some toxic strains through a combination of approaches including PCR data from clonal cultures.  相似文献   

2.
Sexual life cycle events in Pfiesteria piscicida and cryptoperidiniopsoid heterotrophic dinoflagellates were determined by following the development of isolated gamete pairs in single‐drop microcultures with cryptophyte prey. Under these conditions, the observed sequence of zygote formation, development, and postzygotic divisions was similar in these dinoflagellates. Fusion of motile gamete pairs each produced a rapidly swimming uninucleate planozygote with two longitudinal flagella. Planozygotes enlarged as they fed repeatedly on cryptophytes. In <12 h in most cases, each planozygote formed a transparent‐walled nonmotile cell (cyst) with a single nucleus. Zygotic cysts did not exhibit dormancy under these conditions. In each taxon, dramatic swirling chromosome movements (nuclear cyclosis) were found in zygote nuclei before division. In P. piscicida, nuclear cyclosis occurred in the zygotic cyst or apparently earlier in the planozygote. In the cryptoperidiniopsoids, nuclear cyclosis occurred inthe zygotic cyst. After nuclear cyclosis, a single cell division occurred in P. piscicida and cryptoperidiniopsoid zygotic cysts, producing two offspring that emerged as biflagellated cells. These two flagellated cells typically swam for hours and fed on cryptophytes before encysting. A single cell division in these cysts produced two biflagellated offspring that also fed before encysting for further reproduction. This sequence of zygote development and postzygotic divisions typically was completed within 24 h and was confirmed in examples from different isolates of each taxon. Some aspects of the P. piscicida sexual life cycle determined here differed from previous reports.  相似文献   

3.
The putatively toxic dinoflagellate Pfiesteria piscicida (Steidinger et Burkholder) has been reported to have an unusual life cycle for a free‐living marine dinoflagellate. As many as 24 life cycle stages were originally described for this species. During a recent phylogenetic study in which we used clonal cultures of P. piscicida, we were unable to confirm many reported life cycle stages. To resolve this discrepancy, we undertook a rigorous examination of the life cycle of P. piscicida using nuclear staining techniques combined with traditional light microscopy, high‐resolution video microscopy, EM, and in situ hybridization with a suite of fluorescently labeled peptide nucleic acid (PNA) probes. The results showed that P. piscicida had a typical haplontic dinoflagellate life cycle. Asexual division occurred within a division cyst and not by binary fission of motile cells. Sexual reproduction of this homothallic species occurred via the fusion of isogamous gametes. Examination of tanks where P. piscicida was actively feeding on fish showed that amoebae were present; however, they were contaminants introduced with the fish. Whole cell probing using in situ hybridization techniques confirmed that these amoebae were hybridization negative for a P. piscicida‐specific PNA probe. Direct observations of clonal P. piscicida cultures revealed no unusual life cycle stages. Furthermore, the results of this study provided no evidence for transformations to amoebae. We therefore conclude that P. piscicida has a life cycle typical of free‐living marine dinoflagellates and lacks any amoeboid or other specious stages.  相似文献   

4.
The holozoic dinoflagellate, Gymnodinium fungiforme Anissimova, has been observed in both asexually and sexually reproducing cultures. Asexual reproduction is characterized by zoosporangium formation and subsequent new cell release. Sexuality is gametic, and planozygotes and hypnozygotes are present. The life cycle is highly dependent on feeding, and in food-depleted cultures the swimming cells rapidly disappear. These are replaced with resistant long-term resting cysts. Despite its small size (8.5–19 μm), G. fungiforme can feed on prey as large as the ciliated protozoan, Condylostoma magnum Spiegel (600–1000 μm in length), or small injured metazoans, and has been cultured phagotrophically with the chlorophyte, Dunaliella salina Teodoresco as a food source. Eleven additional species of algae including 1 chlorophyte, 7 chrysophytes and 3 rhodophytes, however, were not suitable as food sources. Feeding is characterized by the formation of ‘dynamic aggregations’ of hundreds of dinoflagellates that attach to the surface of a prey organism by a peduncle. G. fungiforme ingests the cytoplasm or body fluids of its prey and a feeding aggregation can ingest a C. magnum in 20–30 minutes.  相似文献   

5.
Grazing and growth of Pfiesteria piscicida (Pfiest) were investigated using batch and cyclostat cultures with Rhodomonas sp. (Rhod) as prey. Observed maximum growth rates (1.4 d?1) and population densities (2 × 105 cells·mL?1) corresponded to values predicted by Monod functions (1.76 d?1; 1.4 × 105 cells·mL?1). In batch cultures under a range of prey‐to‐predator ratios (0.1:1 to 180:1) and prey concentrations (1000–71,000 cells·mL?1), Rhodomonas sp. was always depleted rapidly and P. piscicida concentrations increased briefly. The rate of Rhodomonas sp. depletion and the magnitude of P. piscicida population maxima depended on the prey‐to‐predator ratio and prey concentration. Starvation resulted in cell cycle arrest at G1 and G2+M and ultimately the demise of both P. piscicida and Rhodomonas sp. populations, demonstrating the dependence of P. piscicida on the supply of appropriate prey. The depletion of Rhodomonas sp. populations could be attributed directly to grazing, because P. piscicida did not exert detectable inhibitory effects on the growth of Rhodomonas sp. but grazed intensely, with maximum grazing rates>10 Rhod·Pfiest?1·d?1 and with no apparent threshold prey abundance for grazing. The results suggest that 1) the abundance of appropriate prey may be an important factor regulating P. piscicida abundance in nature, 2) P. piscicida may control prey population, and 3) high growth and grazing potentials of P. piscicida along with cell cycle arrest may confer survival advantages.  相似文献   

6.
Pfiesteria shumwayae Glasgow et J. M. Burkh. [=Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester] is a heterotrophic dinoflagellate commonly found in temperate, estuarine waters. P. shumwayae can feed on other protists, fish, and invertebrates, but research on the biochemical requirements of this species has been restricted by the lack of axenic cultures. An undefined, biphasic culture medium was formulated that supported the axenic growth of two of three strains of P. shumwayae. The medium contained chicken egg yolk as a major component. Successful growth depended on the method used to sterilize the medium, and maximum cell yields (104 · mL?1) were similar to those attained in previous research when P. shumwayae was cultured with living fish or microalgae. Additionally, P. shumwayae flagellate cells ingested particles present in the biphasic medium, allowing detailed observations of feeding behavior. This research is an initial step toward a chemically defined axenic culture medium and determination of P. shumwayae metabolic requirements.  相似文献   

7.
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates.  相似文献   

8.
本文通过电镜扫描、石腊切片及用苏木精染色法和DAPI荧光染色,对榆耳子实体有性结构进行观察,证实榆耳子实体菌盖结构分三层:上表层为毛层,表面着生有排列较密集顶端游离的菌丝,它们相互粘连呈菌丝束;中间层为髓部,由较疏松而相互交织在一起的薄壁菌丝组成,菌丝间充满胶质物质;下表层为子实层,表面起伏不平,呈不规则的疣状突起,上面着生担子和囊状体,担子无隔膜棍棒形,外表有不规则的网状纹饰,其顶部着生4个瓶梗状小梗,每个小梗上着生1个椭圆形或腊肠形担孢子,大小为2.5—3.0×6.0—6.5μm,担孢子表面有不规则的网状纹饰结构。在担子间的囊状体为长圆柱形或圆锥形,表面有较密的不规则的网状纹饰。 榆耳有性生殖为异宗配合。绝大多数担孢子含一个细胞核,很少数担孢子含两个细胞核。孢子萌发为一端萌发,也有少数为两端萌发。初生菌丝单核,不能形成子实体,当两种不同遗传性的交配型的初生菌丝结合后,形成具有锁状联合结构的双核菌丝,并可发育成子实体。榆耳具有典型减数分裂过程,不具有减数分裂后核分裂行为,四个子核分别进入四个担孢子内。 在初生菌丝或次生菌丝上,均可产生间生的或顶生的厚垣孢子。经过温度、光照和紫外线照射的诱发,均未发现有其它类型的无性孢子产生。因此,榆耳菌的生活史和大多数担子  相似文献   

9.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   

10.
The centric diatom, Thalassiosira weissflogii Grun., can be induced to undergo spermatogenesis by exposing cells maintained at saturating levels of continuous light to either dim light or darkness. Using flow cytometry to determine the relative DNA and chlorophyll content per cell, the number of cells within a population that responded to and induction signal was measured. From 0 to over 90% of a population differentiated into male gametes depending upon both the induction trigger and the population examined, regardless of the average cell size of the population. Through the use of synchromized cultures, we demonstrated that responsiveness to an induction trigger was a function of cell cycle stage; cells in early G1 were not yet committed to complete mitosis and were induced to form male gametes, whereas cells further along in their cell cycle were unresponsive to these same cues. A simple model combining the influence of light on the mitotic cell cycle and on the induction of spermatogenesis is proposed to explain the observed diversity in population responses to changes in light conditions.  相似文献   

11.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

12.
The diplobiontic–haplodiplontic life cycle with alternating isomorphic generations in Stigeoclonium tenue (C. Agardh) Kütz. is described for the first time. Sporophytes (2n = 10) arise from tetraflagellate zoospores that are produced by meiosis. Sporic meiosis might be inferred from the cruciform divisions formed during zoosporogenesis and is confirmed through observations of prophase I substages. Zoospores do not germinate directly but produce a haploid cyst that germinates to give rise to a gametophyte (n = 5). Gametophytes produce biflagellate isogametes, which fuse to produce zygotes that germinate by mitosis into the sporophytic stage. Gametophytes and sporophytes reproduce asexually both via mitotic tetraflagellate zoospores and by thallus fragmentation. Results from this study indicate that both the cosmopolitan distribution and dominance of S. tenue in many periphytic communities might be due to its multiple reproductive strategies.  相似文献   

13.
14.
The putatively toxic dinoflagellates Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester and Pfiesteria piscicida Steid. et J. M. Burkh. have been implicated in massive fish kills and of having negative impacts on human health along the mid‐Atlantic seaboard of the USA. Considerable debate still remains as to the mechanisms responsible for fish mortality (toxicity vs. micropredation) caused by these dinoflagellates. Genetic differences among these cultures have not been adequately investigated and may account for or correlate with phenotypic variability among strains within each species. Genetic variation among strains of Ps. shumwayae and P. piscicida was examined by PCR–RFLP analysis using cultures obtained from the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton (CCMP), as well as those from our own and other colleagues’ collection efforts. Examination of restriction digest banding profiles for 22 strains of Ps. shumwayae revealed the presence of 10 polymorphic restriction endonuclease sites within the first and second internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the rDNA complex, and the cytochrome oxidase subunit I (COI) gene. Three compound genotypes were represented within the 22 Ps. shumwayae strains. Conversely, PCR–RFLP examination of 14 strains of P. piscicida at the same ITS1, 5.8S, and ITS2 regions revealed only one variable restriction endonuclease site, located in the ITS1 region. In addition, a dinoflagellate culture listed as P. piscicida (CCMP 1928) and analyzed as part of this study was identified as closely related to Luciella masanensis P. L. Mason, H. J. Jeong, Litaker, Reece et Steid.  相似文献   

15.
Pseudo‐nitzschia delicatissima (Cleve) Heiden is a very common pennate planktonic diatom found in temperate marine waters, where it is often responsible for blooms. Recently, three distinct internal transcribed spacer types have been recorded during a P. delicatissima bloom in the Gulf of Naples (Mediterranean Sea, Italy), which suggests the existence of cryptic diversity. We carried out mating experiments with clonal strains belonging to the most abundant internal transcribed spacer type. Pseudo‐nitzschia delicatissima is heterothallic and produces two functional anisogametes per gametangium. The elongated auxospore possesses a transverse and a longitudinal perizonium. The sexual phase was observed to occur over a wide size spectrum, spanning 19–80 μm and corresponding to almost the whole range of cell length observed for P. delicatissima. We also investigated cell morphology, valve ultrastructure and morphometry of parental, F1‐generation strains, and the progeny of crosses between parental and F1 strains. Although ultrastructural features match those described for P. delicatissima, variability in cell shape was recorded in the largest cells of the F1 generation as well as in valves with an abnormal arrangement of poroids. As many other diatoms, P. delicatissima undergoes size reduction over its life cycle, and cells of different size showed differences in growth rates and the amount of size reduction per cell cycle. Cells between 60 and 30 μm in length showed the fastest growth and the slowest rates of size reduction per generation. In culture, P. delicatissima cells can decrease to 8 μm in length; however, such small cells (≤30 μm) are not recorded in the sea, and this raises interesting questions about the factors that control their survival in the natural environment.  相似文献   

16.
The putative harmful algal bloom dinoflagellate, Pfiesteria piscicida (Steidinger et Burkholder), frequently co‐occurs with other morphologically similar species collectively known as Pfiesteria‐like organisms (PLOs). This study specifically evaluated whether unique sequences in the internal transcribed spacer (ITS) regions, ITS1 and ITS2, could be used to develop PCR assays capable of detecting PLOs in natural assemblages. ITS regions were selected because they are more variable than the flanking small subunit or large subunit rRNA genes and more likely to contain species‐specific sequences. Sequencing of the ITS regions revealed unique oligonucleotide primer binding sites for Pfiesteria piscicida, Pfiesteria shumwayae (Glasgow et Burkholder), Florida “Lucy” species, two cryptoperidiniopsoid species, “H/V14” and “PLO21,” and the estuarine mixotroph, Karlodinium micrum (Leadbetter et Dodge). These PCR assays had a minimum sensitivity of 100 cells in a 100‐mL sample (1 cell·mL?1) and were successfully used to detect PLOs in the St. Johns River system in Florida, USA. DNA purification and aspects of PCR assay development, PCR optimization, PCR assay controls, and collection of field samples are discussed.  相似文献   

17.
Studies of the life cycle of a centric diatom, tentatively identified as Stephanodiscus neoastraea Håkansson & Hickel, showed that sexual reproduction occurred every year in a freshwater lake (Lough Neagh, Northern Ireland). Male and female gametes were produced in cells below 55% of the maximum diameter during a 3–4-week period in late summer, following the return of nitrate concentrations above 10 μM NO3-N. The frequency of sexual reproduction was linked to the cycle of diameter size reduction and regeneration. The times of largest decreases in cell diameter were during nutrient stress in summer and low light conditions in late autumn, rather than during the main spring growth period. So, environmental conditions (combined with the limited life-spans of individual cells) affected the rate of diameter reduction and, therefore, the length of the life cycle (3–4 years).  相似文献   

18.
Water quality, microbial contamination, prior fish health, and variable results have been major impediments to identifying the cause and mechanism of fish mortality in standard aquarium‐format Pfiesteria bioassays. Therefore, we developed a sensitive 96‐h larval fish bioassay for assessing Pfiesteria spp. pathogenicity using six‐well tissue culture plates and 7‐day‐old larval cyprinodontid fish. We used the assay to test pathogenicity of several clonal lines of Pfiesteria piscicida Steidinger and Burkholder and P. shumwayae Glasgow and Burkholder that had been cultured with algal prey for 2 to 36 months. The P. shumwayae cultures exhibited 80%–100% cumulative mortality in less than 96 h at initial zoospore densities of approximately 1000 cells·mL?1. No fish mortalities occurred with P. piscicida at identical densities or in controls. In a dose‐response assay, we demonstrated a strong positive correlation between dinospore density and fish mortality in a highly pathogenic culture of P. shumwayae, generating a 96‐h LD50 of 108 zoospores·mL?1. Additionally, we applied the assay to evaluate a 38‐L P. shumwayae bioassay that was actively killing fish and compared results with those from exposures of juvenile tilapia (Oreochromis niloticus) in a 500‐mL assay system. Water from the fish‐killing 38‐L assay was filtered and centrifuged to produce fractions dominated by dinoflagellates, bacteria, or presumed ichthyotoxin (cell‐free fraction). After 96 h, the larval fish assay exhibited 50%–100% cumulative mortality only in fractions containing dinoflagellates, with no mortalities occurring in the other fractions. The 500‐mL bioassay with tilapia produced inconsistent results and demonstrated no clear correlation between mortality and treatment. The new larval fish bioassay was demonstrated as a highly effective method to verify and evaluate dinoflagellate pathogenicity.  相似文献   

19.
20.
Few members of the well‐studied marine phytoplankton taxa have such a complex and polymorphic life cycle as the genus Phaeocystis. However, despite the ecological and biogeochemical importance of Phaeocystis blooms, the life cycle of the major bloom‐forming species of this genus remains illusive and poorly resolved. At least six different life stages and up to 15 different functional components of the life cycle have been proposed. Our culture and field observations indicate that there is a previously unrecognized stage in the life cycle of P. antarctica G. Karst. This stage comprises nonmotile cells that range in size from ~4.2 to 9.8 μm in diameter and form aggregates in which interstitial spaces between cells are small or absent. The aggregates (hereafter called attached aggregates, AAs) adhere to available surfaces. In field samples, small AAs, surrounded by a colony skin, adopt an epiphytic lifestyle and adhere in most cases to setae or spines of diatoms. These AAs, either directly or via other life stages, produce the colonial life stage. Culture studies indicate that bloom‐forming, colonial stages release flagellates (microzoospores) that fuse and form AAs, which can proliferate on the bottom of culture vessels and can eventually reform free‐floating colonies. We propose that these AAs are a new stage in the life cycle of P. antarctica, which we believe to be the zygote, thus documenting sexual reproduction in this species for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号