首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence variation among 22 isolates representing a global distribution of the prymnesiophyte genus Phaeocystis has been compared using nuclear-encoded 18S rRNA genes and two non-coding regions: the ribosomal DNA internal transcribed spacer 1 (ITS1) separating the 18S rRNA and 5.8S rRNA genes and the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) spacer flanked by short stretches of the adjacent large and small subunits (rbcL and rbcS). 18S rRNA can only resolve major species complexes. The analysis suggests that an undescribed unicellular Phaeocystis sp. (isolate PLY 559) is a sister taxon to the Mediterranean unicellular Phaeocystis jahnii; this clade branched prior to the divergence of all other Phaeocystis species, including the colonial ones. Little divergence was seen among the multiple isolates sequenced from each colonial species complex. RUBISCO spacer regions are even more highly conserved among closely related colonial Phaeocystis species and are identical in Phaeocystis antarctica, Phaeocystis pouchetii and two warm-temperate strains of Phaeocystis globosa, with a single base substitution in two cold-temperate strains of P. globosa. The RUBISCO spacer sequences from two predominantly unicellular Phaeocystis isolates from the Mediterranean Sea and PLY 559 were clearly different from other Phaeocystis strains. In contrast, ITS1 exhibited substantial inter- and intraspecific sequence divergence and showed more resolution among the taxa. Distinctly different copies of the ITS1 region were found in P. globosa, even among cloned DNA from a single strain, suggesting that it is a species complex and making this region unsuitable for phylogenetic analysis in this species. However, among nine P. antarctica strains, four ITS1 haplotypes could be separated. Using the branching order in the ITS1 tree we have attempted to trace the biogeographic history of the dispersal of strains in Antarctic coastal waters.  相似文献   

2.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

3.
Ficus, with about 755 species, diverse habits and complicated co‐evolutionary history with fig wasps, is a notoriously difficult group in taxonomy. DNA barcoding is expected to bring light to the identification of Ficus but needs evaluation of candidate loci. Based on five plastid loci (rbcL, matK, trnH‐psbA, psbK‐psbI, atpF‐atpH) and a nuclear locus [internal transcribed spacer (ITS)], we calculated genetic distances and DNA barcoding gaps individually and in combination and constructed phylogenetic trees to test their ability to distinguish the species of the genus. A total of 228 samples representing 63 putative species in Ficus (Moraceae) of China were included in this study. The results demonstrated that ITS has the most variable sites, greater intra‐ and inter‐specific divergences, the highest species discrimination rate (72%) and higher primer universality among the single loci. It is followed by psbK‐psbI and trnH‐psbA with moderate variation and considerably lower species discrimination rates (about 19%), whereas matK, rbcL and atpF‐atpH could not effectively separate the species. Among the possible combinations of loci, ITS + trnH‐psbA performed best but only marginally improved species resolution over ITS alone (75% vs. 72%). Therefore, we recommend using ITS as a single DNA barcoding locus in Ficus.  相似文献   

4.
Abstract Species of Prunus L. sect. Persica are not only important fruit trees, but also popular ornamental and medicinal plants. Correct identification of seedlings, barks, or fruit kernels is sometimes required, but no reliable morphological characters are available. Nowadays, the technique of DNA barcoding has the potential to meet such requirements. In this study, we evaluated the suitability of 11 DNA loci (atpB‐rbcL, trnH‐psbA, trnLF, trnSG, atpFH, rbcL, matK, rpoB, rpoC1, nad1, and internal transcribed spacer [ITS]) as candidate DNA barcodes for peaches, using samples from 38 populations, covering all the species in sect. Persica. On the whole, the primers worked well in this group and sequencing difficulties were met only in the case of ITS locus. Five loci (rbcL, matK, rpoB, rpoC, and nad1) have very low variation rates, whereas atpB‐rbcL, atpF‐H, trnH‐psbA, trnL‐F and trnSG show more variability. The most variable loci, atpB‐rbcL and trnH‐psbA, can distinguish three of the five species. Two two‐locus combinations, atpB‐rbcL+trnL‐F and atpB‐rbcL+atpF‐H, can resolve all five species. We also find that identification powers of the loci are method‐dependent. The NeighborNet method shows higher species identification power than maximum parsimony, neighbor joining, and unweighted pair group method with arithmetic mean methods.  相似文献   

5.
The systematics of the Prasiolales was investigated by phylogenetic inference based on analyses of the rbcL and 18S rRNA genes for representatives of all four genera currently attributed to this order (Prasiococcus, Prasiola, Prasiolopsis, Rosenvingiella), including all type species. The rbcL gene had higher sequence divergence than the 18S rRNA gene and was more useful for phylogenetic inference at the ranks of genus and species. In the rbcL gene phylogeny, three main clades were observed, corresponding to Prasiola, Prasiolopsis, and Rosenvingiella. Prasiococcus was nested among species of Prasiola occurring in subaerial and supralittoral habitats. Trichophilus welckeri Weber Bosse, a subaerial alga occurring in the fur of sloths in Amazonia, was closely related to Prasiolopsis ramosa Vischer. The species of Prasiola were grouped into three well‐supported clades comprising (i) marine species, (ii) freshwater and terrestrial species with linear blades, and (iii) terrestrial species with rounded or fan‐shaped blades. Sequence divergence was unexpectedly low in the marine group, which included species with different morphologies. For the 18S rRNA gene, the phylogenetic analyses produced several clades observed for the rbcL gene sequence analysis, but, due to very little sequence variation, it showed considerably lower resolution for inference at the species and genus levels. Due to the low support of some internal branches, the results of the analyses did not allow an unambiguous clarification of the origin and the early evolution of the Prasiolales.  相似文献   

6.
To discriminate between cultivated Porphyra species (Porphyra yezoensis and Porphyra tenera) and closely related wild Porphyra species, we developed a polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis of the rbcL gene using five restriction enzymes. Although our previous PCR‐RFLP analyses of internal transcribed spacer (ITS) rDNA and plastid RuBisCO spacer regions could not always discriminate wild P. yezoensis, wild P. tenera, and closely related wild species, the PCR‐RFLP profiles of the rbcL gene were useful in discriminating samples collected from natural habitats. Therefore, PCR‐RFLP analysis of the rbcL gene will help in the simple identification of a large number of samples, not only for the establishment of reliable cultures as breeding material, but also for the taxonomic investigations of species that are closely related to cultivated Porphyra.  相似文献   

7.
For the first time, morpho‐anatomical characters that were congruent with DNA sequence data were used to characterize several genera in Hapalidiaceae—the major eco‐engineers of Subarctic carbonate ecosystems. DNA sequencing of three genes (SSU, rbcL, ribulose‐1, 5‐bisphosphate carboxylase/oxygenase large subunit gene and psbA, photosystem II D1 protein gene), along with patterns of cell division, cell elongation, and calcification supported a monophyletic Clathromorphum. Two characters were diagnostic for this genus: (i) cell division, elongation, and primary calcification occurred only in intercalary meristematic cells and in a narrow vertical band (1–2 μm wide) resulting in a “meristem split” and (ii) a secondary calcification of interfilament crystals was also produced. Neopolyporolithon was resurrected for N. reclinatum, the generitype, and Clathromorphum loculosum was transferred to this genus. Like Clathromorphum, cell division, elongation, and calcification occurred only in intercalary meristematic cells, but in a wider vertical band (over 10–20 μm), and a “meristem split” was absent. Callilithophytum gen. nov. was proposed to accommodate Clathromorphum parcum, the obligate epiphyte of the northeast Pacific endemic geniculate coralline, Calliarthron. Diagnostic for this genus were epithallial cells terminating all cell filaments (no dorsi‐ventrality was present), and a distinct “foot” was embedded in the host. Leptophytum, based on its generitype, L. laeve, was shown to be a distinct genus more closely related to Clathromorphum than to Phymatolithon. All names of treated species were applied unequivocally by linking partial rbcL sequences from holotype, isotype, or epitype specimens with field‐collected material. Variation in rbcL and psbA sequences suggested that multiple species may be passing under each currently recognized species of Clathromorphum and Neopolyporolithon.  相似文献   

8.
9.
We investigated the genetic variations of the samples that were tentatively identified as two cultivated Porphyra species (Porphyra yezoensis Ueda and Porphyra tenera Kjellm.) from various natural populations in Japan using molecular analyses of plastid and nuclear DNA. From PCR‐RFLP analyses using nuclear internal transcribed spacer (ITS) rDNA and plastid RUBISCO spacer regions and phylogenetic analyses using plastid rbcL and nuclear ITS‐1 rDNA sequences, our samples from natural populations of P. yezoensis and P. tenera showed remarkably higher genetic variations than found in strains that are currently used for cultivation. In addition, it is inferred that our samples contain four wild Porphyra species, and that three of the four species, containing Porphyra kinositae, are closely related to cultivated Porphyra species. Furthermore, our PCR‐RFLP and molecular phylogenetic analyses using both the nuclear and plastid DNA demonstrated the occurrence of plastid introgression from P. yezoensis to P. tenera and suggested the possibility of plastid introgression from cultivated P. yezoensis to wild P. yezoensis. These results imply the importance of collecting and establishing more strains of cultivated Porphyra species and related wild species from natural populations as genetic resources for further improvement of cultivated Porphyra strains.  相似文献   

10.
A set of 18 freshwater and morphologically similar marine samples of Ulva were collected from inland and coastal waters throughout Europe to assess their taxonomic identity and invasive potential. An additional 11 specimens were obtained from herbaria. The material was studied using a combination of classical morphological methods and molecular techniques; the latter included sequencing of the nuclear internal transcribed spacer (ITS) region (ITS1‐5.8S‐ITS2) and the chloroplast RUBISCO LSU (rbcL) gene and comparison of the ITS2 secondary structure predictions. Based on classical methods, all the specimens could be determined as U. flexuosa Wulfen and could be further divided into three groups matching three infraspecific taxa. This pattern was generally well supported by molecular phylogenetic analyses. All sequenced samples formed a monophyletic lineage within Ulva, showing a putative synapomorphy in the ITS2 secondary structure. The individual subspecies corresponded to phylogenetic clusters within this lineage. In freshwater habitats, the dominant taxon was U. flexuosa subsp. pilifera, but subsp. paradoxa was also occasionally recorded. In marine habitats, only U. flexuosa subsp. flexuosa and subsp. paradoxa were located. These findings support the view that U. flexuosa subsp. pilifera is primarily a freshwater alga that probably dominates in Europe. As confirmed by the study of herbarium specimens, U. flexuosa should be regarded as indigenous, although it has a tendency to form blooms under certain conditions. Besides clarifying the identity of prevailing European freshwater Ulva, the study provides novel data concerning the distribution and morphological plasticity within the U. flexuosa complex.  相似文献   

11.
A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2‐fixation enzyme RUBISCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the “phytoarray.” Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum Bohlin were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways, and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high‐resolution, high‐throughput approach to assessing phytoplankton community composition in marine environments.  相似文献   

12.
A phylogeny of 21 haptophyte algae was inferred by maximum parsimony, neighbor-joining, and maximum likelihood analyses of sequences of the plastid-encoded gene, rbcL. Sequence variation in the spacer region of the RUBISCO operon was also investigated. In all the rbcL trees constructed, the haptophytes form two distinct clades: one includes the Pavlovales and the other includes the Prymnesiales, Coccosphaerales, and Isochrysidales (all sensu Parke and Green 1976 . This relationship coincides with the recent taxonomic treatment splitting the division into two subclasses, the Prymnesidae and Pavlovidae ( Cavalier-Smith 1989 ) or the Prymnesiophycidae and the Pavlovophycidae using botanical suffixes ( Jordan and Green 1994 ), or into two classes, the Patelliferea and the Pavlovea ( Cavalier-Smith 1993 ). In the Prymnesiophycidae, all the coccolithophorids examined are placed in a single clade, which suggests a single origin of the coccolithophorids and the ability of coccolith formation in the haptophytes. The genus Chrysochromulina is polyphyletic. Species of Chrysochromulina with a very long haptonema and a compressed cell body (typical of species including the type C. parva Lackey) form a clade, including Imantonia, that is often classified in the Isochrysidales in the neighbor-joining tree, whereas some species possessing a nontypical cell body and cell covering form a clade with Prymnesium and Platychrysis in all trees. It is suggested that loss of the haptonema in Imantonia and the reduction in Prymnesium and Platychrysis occurred secondarily and independently in two different lineages. Within the coccolithophorids, four clades are recognized: Pleurochrysis, Calyptrosphaera-Cruciplacolithus-Calcidiscus-Umbilicosphaera, Helicosphaera, and Emiliania-Gephyrocapsa. A non-coccolith-bearing haptophyte, Isochrysis, is an ingroup of the Emiliania-Gephyrocapsa clade, suggesting its secondary loss of the ability to form a coccolith. Sequence comparison of the spacer region of RUBISCO operon supports most results obtained in the analysis of rbcL sequences. Monophyly of the Prymnesiales sensu Parke and Green is still unclear because of low (<50%) bootstrap support for this group.  相似文献   

13.
DNA sequence data were obtained for the gene encoding the large subunit of RUBISCO (rbcL) from 26 strains of Spirogyra and seven of Sirogonium, using as outgroups 10 genera in the Zygnematales and Desmidiales (Closterium, Cosmarium, Cylindrocystis, Gonatozygon, Mesotaenium, Netrium, Penium, Zygnema, Zygnemopsis, Zygogonium). Sequence data were analyzed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI), with bootstrap replication (MP, ML) and posterior probabilities (BI) as measures of support. MP, ML, and BI analyses of the rbcL data strongly support a single clade containing Spirogyra and Sirogonium. The Spirogyra taxa are monophyletic, with the exception of Spirogyra maxima (Hassall) Wittrock, which is nested within a clade with Sirogonium and shares with them the characters of loosely spiraled chloroplasts (<1 complete turn per cell) and anisogamy of gametangial cells; S. maxima differs from Sirogonium in displaying well‐defined conjugation tubes rather than a tubeless connection involving bending (genuflection) of filaments. The ML and BI analyses place this Sirogonium/Spirogyra maxima clade sister to the remaining Spirogyra. Morphological differences among strains of Spirogyra grouped together on the basis of rbcL data, including laboratory strains derived from clonal cultures (Spirogyra communis, S. pratensis), indicate that some characters (filament width, chloroplast number) used in the traditional taxonomy of this group are poor measures of species identity. However, some characters such as replicate end walls and loose spiraling of chloroplasts may be synapomorphies for Spirogyra clades.  相似文献   

14.
This study evaluated the phylogenetic relationship among samples of “Chantransia” stage of the Batrachospermales and Thoreales from several regions of the world based on sequences of two genes—the plastid‐encoded RUBISCO LSU gene (rbcL) and the nuclear SSU ribosomal DNA gene (SSU rDNA). All sequences of “Chantransia macrospora” were shown to belong to Batrachospermum macrosporum based on both molecular markers, confirming evidence from previous studies. In contrast, nine species are now associated with “Chantransia pygmaea,” including seven species of the Batrachospermales and two of the Thoreales. Therefore, the presence of “C. macrospora” in a stream can be considered reliable evidence that it belongs to B. macrosporum, whereas the occurrence of “C. pygmaea” does not allow the recognition of any particular species, since it is associated with at least nine species. Affinities of “Chantransia” stages to particular taxa were congruent for 70.5% of the samples comparing the rbcL and SSU analyses, which were associated with the same or closely related species for both markers. Sequence divergences have been reported in the “Chantransia” stage in comparison to the respective gametophyte, and this matter deserves further attention.  相似文献   

15.
Southern Africa has economically exploited populations of terete gracilarioids on the cool temperate west coast and numerous species of endemic and Indo‐Pacific tropical Gracilariaceae on the south and east coasts. Gross morphological characters have been the main means of identification, and incorrect applications have led to a number of misidentifications. In this study, small subunit rDNA and RUBISCO spacer sequences were used to determine phylogenetic relationships. Whereas rDNA sequences successfully differentiate major groups within the family as well as species belonging to the Gracilariopsis and the Curdiea/Melanthalia clade, RUBISCO spacer sequencing was required to distinguish between species of Gracilaria. The southern African gracilarioid complex (stringy, terete, elongate members of the Gracilariaceae) was resolved into three species: Gracilaria gracilis, Gracilariopsis longissima, and Gracilariopsis funicularis. South African Gracilaria protea was shown to be conspecific with tropical Indian Ocean G. corticata. Apart from G. gracilis and G. corticata, South African Gracilaria species were differentiated into a temperate‐tropical terete grouping and a temperate‐tropical flattened grouping.  相似文献   

16.
Cozzolino  Salvatore  Caputo  Paolo  De Castro  Olga  Moretti  Aldo  Pinto  Gabriele 《Hydrobiologia》2000,433(1-3):145-151
Cyanidium caldarium, Cyanidioschyzon merolae and Galdieria sulphuraria are three unicellular algae characteristic, of acid thermal environments. Recently, on the basis of morphological characters, three new species of Galdieria (G. partita, G. daedala, G. maxima ) isolated from acid-thermal springs in Russia have been instituted. A selected region of rbcL and the sequence of the intergenic spacer between the rbcL and rbcS have been amplified and sequenced from different Galdieria species and strains, in order to define molecular relationship among these interesting algae. The obtained cladogram shows that Cyanidium caldarium and Cyanidioschyzon merolae form a sister group which, in turn, is in a sister group relationship with Galdieria. This last genus is divided in two clades, one of which includes G. sulphuraria accessions from Naples (Italy), California, and Yellowstone and the other one includes G. sulphuraria accessions from Java (Indonesia) and from the Russian species. These results support the status of the genus Galdieria and suggest that G. daedala, G. maxima and G. partita are three very similar strains of G. sulphuraria; the rbcL variation within Galdieria accessions has a pattern which is broadly connected to the geographial distribution. The data obtained from the intergenic rbcL-rbcS spacer partly confirm those from the rbcL analysis.  相似文献   

17.
The phylogeny and diversity of two key functional genes were investigated as the basis for improved understanding of the community structure of natural phytoplankton assemblages in marine environments. New partial NR (encoding eukaryotic assimilatory nitrate reductase) and rbcL (encoding LSU of RUBISCO) sequences from 10 cultured phytoplankton strains are reported. Phytoplankton community composition from Monterey Bay (MB), a coastal upwelling site on the California coast, and the Western English Channel (EC), a North Atlantic spring bloom environment, was elucidated based on NR and rbcL sequences. Diatoms were by far the most frequently detected group in both environments, consistent with their importance as a major bloom‐forming group. Both NR and rbcL libraries contained sequences representing cosmopolitan types such as Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, Phaeocystis, and Pseudo‐nitzschia. The NR and rbcL libraries also contained sequences from other chromophytic algal groups and the Dinophyceae (alveolates). Sequences showing identity with key bloom‐forming organisms including E. huxleyi, Phaeocystis pouchetii (Har.) Lagerh., Pseudo‐nitzschia sp., and Thalassiosira sp. in the rbcL libraries confirm previous studies from these environments based on traditional approaches. Diversity/pattern analyses detected significant compositional differences among the libraries, which were consistent with patterns identified by phylogenetic analysis, but these patterns were not strongly correlated with obvious environmental variables such as temperature and nitrate concentration. Many new and divergent NR and rbcL sequences are reported, but the extent to which they represent unknown types cannot be determined until greater effort is made to sequence the existing culture collections.  相似文献   

18.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

19.
20.
Nuclear‐encoded SSU rDNA, chloroplast LSU rDNA, and rbcL genes were sequenced from 53 strains of conjugating green algae (Zygnematophyceae, Streptophyta) and used to analyze phylogenetic relationships in the traditional order Zygnematales. Analyses of a concatenated data set (5,220 nt) established 12 well‐supported clades in the order; seven of these constituted a superclade, termed “Zygnemataceae.” Together with genera (Zygnema, Mougeotia) traditionally placed in the family Zygnemataceae, the “Zygnemataceae” also included representatives of the genera Cylindrocystis and Mesotaenium, traditionally placed in the family Mesotaeniaceae. A synapomorphic amino acid replacement (codon 192, cysteine replaced by valine) in the LSU of RUBISCO characterized this superclade. The traditional genera Netrium, Cylindrocystis, and Mesotaenium were shown to be para‐ or polyphyletic, highlighting the inadequacy of phenotypic traits used to define these genera. Species of the traditional genus Netrium were resolved as three well‐supported clades each distinct in the number of chloroplasts per cell, their surface morphology (structure and arrangement of lamellae) and the position of the nucleus or nuclear behavior during cell division. Based on molecular phylogenetic analyses and synapomorphic phenotypic traits, the genus Netrium has been revised, and a new genus, Nucleotaenium gen. nov., was established. The genus Planotaenium, also formerly a part of Netrium, was identified as the sister group of the derived Roya/Desmidiales clade and thus occupies a key position in the evolutionary radiation leading to the most species‐rich group of streptophyte green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号