首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Dermaptera (earwigs) is a cosmopolitan order of insects, the phylogenetic relationships of which are poorly understood. The phylogeny of Dermaptera was inferred from large subunit ribosomal (28S), small subunit ribosomal (18S), histone-3 (H3) nuclear DNA sequences, and forty-three morphological characters. Sequence data were collected for thirty-two earwig exemplar taxa representing eight families in two suborders: Hemimeridae (suborder Hemimerina); Pygidicranidae, Anisolabididae, Labiduridae, Apachyidae, Spongiphoridae, Chelisochidae and Forficulidae (suborder Forficulina). Eighteen taxa from ten additional orders were also included, representing Ephemeroptera, Odonata, Orthoptera, Phasmida, Embiidina, Mantodea, Isoptera, Blattaria, Grylloblattodea and Zoraptera. These data were analysed via direct optimization in poy under a range of gap and substitution values to test the sensitivity of the data to variations in parameter values. These results indicate that the epizoic Hemimerus is not sister to the remaining Dermaptera, but rather nested as sister to Forficulidae + Chelisochidae. These analyses support the paraphyly of Pygidicranidae and Spongiphoridae and the monophyly of Chelisochidae, Forficulidae, Anisolabididae and Labiduridae.  相似文献   

2.
While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy.  相似文献   

3.
The largest suborder of bark lice (Insecta: Psocodea: ‘Psocoptera’) is Psocomorpha, which includes over 3600 described species. We estimated the phylogeny of this major group with family‐level taxon sampling using multiple gene markers, including both nuclear and mitochondrial ribosomal RNA and protein‐coding genes. Monophyly of the suborder was strongly supported, and monophyly of three of four previously recognized infraorders (Caeciliusetae, Epipsocetae, and Psocetae) was also strongly supported. In contrast, monophyly of the infraorder Homilopsocidea was not supported. Based on the phylogeny, we divided Homilopsocidea into three independent infraorders: Archipsocetae, Philotarsetae, and Homilopsocidea. Except for a few cases, previously recognized families were recovered as monophyletic. To establish a classification more congruent with the phylogeny, we synonymized the families Bryopsocidae (with Zelandopsocinae of Pseudocaeciliidae), Calopsocidae (with Pseudocaeciliidae), and Neurostigmatidae (with Epipsocidae). Monophyly of Elipsocidae, Lachesillidae, and Mesopsocidae was not supported, but the monophyly of these families could not be rejected statistically, so they are tentatively maintained as valid families. The molecular tree was compared with a morphological phylogeny estimated previously. Sources of congruence and incongruence exist and the utility of the morphological data for phylogenetic estimation is evaluated. © 2014 The Linnean Society of London  相似文献   

4.
Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark‐spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter‐ and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless‐modified Echinosteliales. We discuss possible evolutionary pathways in dark‐spored Myxomycetes and propose a taxonomic update.  相似文献   

5.
Phylogeny of the Neuropterida: a first molecular approach   总被引:4,自引:1,他引:3  
Abstract. In a first molecular approach specially dedicated to examining the phylogeny of the Neuropterida, two nuclear and two mitochondrial genes were tested: 18S rRNA, translation elongation factor‐1α, cytochrome c oxidase subunit 3 and 16S rRNA. Molecular results are discussed in the light of a previous holomorphological cladistic analysis. The hypothesis of a sister‐group relationship Raphidioptera + (Neuroptera + Megaloptera) put forward in recent morphological analyses is supported by our data, which is in contrast to the traditional view (Raphidioptera + Megaloptera) + Neuroptera. Furthermore, the Nevrorthidae (constituting the suborder Nevrorthiformia) as a sister group of all other Neuroptera is confirmed. The disruption of the suborder Hemerobiiformia is the most conflicting result of the molecular analysis. Sisyridae and Osmylidae do not cluster within Hemerobiiformia, but represent two distinct and widely separated branches. The remaining Hemerobiiformia emerge as the sister group of the suborder Myrmeleontiformia, which is once more confirmed as monophyletic. Among the genes tested, cytochrome c oxidase subunit 3 proved to be most potent for resolving the phylogenetic relationships among Neuropterida. The nuclear gene for the ribosomal 18S rRNA is too conserved within the alignable regions, whereas the variable sections are too divergent to be applicable within this evolutionary time frame. The elongation factor‐1α gene proved to exist in more than one copy in Neuropterida, and thus is not applicable in the present state of knowledge. With respect to the mitochondrial sequences (cytochrome c oxidase subunit 3, 16S rRNA), saturation impedes the unambiguous resolution of deeper nodes. Apparently, due to early diversification of the heterogeneous Neuroptera, phylogenetic analysis of this group remains a challenge with respect to selection of the proper genes and mutatis mutandis the morphological approach.  相似文献   

6.
Pentatomomorpha is the second suborder in size only to Cimicomorpha in Heteroptera. However, the phylogenetic relationships among members of the suborder are not well established. Sequences from partial nuclear ribosomal 18S gene and mitochondrial COX1 gene were analyzed separately and in combination to generate a preliminary molecular phylogeny of Pentatomomorpha based on 40 species representing 17 putative families. Analyses of the combined sequence data provided a better-resolved and more robust hypothesis of Pentatomomorpha phylogeny than did separate analyses of the individual genes. The phylogenies were mostly congruent with morphological studies. Results strongly supported the monophyly of the infraorder Pentatomomorpha, and the placement of Aradoidea as sister to Trichophora. The monophyletic Trichophora was grouped into two major lineages, one being the superfamily Pentatomoidea, and the other comprising Lygaeoidea, Coreoidea, and Pyrrhocoroidea. The analysis of the ML and ME trees of combined dataset supported the monophyletic Pentatomoidea. In all analysis the Pyrrhocoroidea was polyphyletic; the monophyletic Lygaeoidea was supported only in the analysis of ME tree, and Coreoidea was polyphyletic except in the MP tree of combined dataset. The molecular and morphylogical data both indicated that the family Coreoidae should be revised subsequently. Our phylogenetic results suggested that the COX1 segment alone might not be an optimal molecular marker for the phylogeny of Pentatomomorpha.  相似文献   

7.
A new family, genus, and species of zooxanthellate macrocnemic zoanthid is described from Okinawa, Japan. The diminutive zoanthid N anozoanthus harenaceus sp. nov. occurs in sandy ‘pools’ upon hard substrates in coral reefs. The results of molecular phylogenetic analyses of mitochondrial 16S ribosomal DNA and cytochrome c oxidase subunit I suggests that Nanozoanthidae fam. nov. is genetically close to family Microzoanthidae and Isozoanthus sulcatus at the intrafamily–suborder level. The Nanozoanthidae fam. nov. –Microzoanthidae clade is clearly highly divergent from all other known zoanthid families and from the order Actiniaria at the suborder level or higher. These results demonstrate that much high‐level (e.g. above genus) diversity remains to be described within the order Zoantharia, and until such work is complete it will be difficult to completely understand their biodiversity. © 2013 The Linnean Society of London  相似文献   

8.
The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Tanymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata ("Family" Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae ("Family" Linderiellidae), which has 11 pairs of trunk limbs. All appear to be part of the Chirocephalidae and share one morphological character: double pre-epipodites on at least part of their legs. That Linderiella is part of the Polyartemiinae suggests that multiplication of the number of limbs occurred once, but was lost again in Linderiella. Within Chirocephalidae, we found two further clades, the Eubranchipus-Pristicephalus clade and the Chirocephalus clade. Pristicephalus is reinstated as a genus.  相似文献   

9.
Rotifera is composed of groups with unusual ultrastructural, physiological, and reproductive characters. Our ability to understand the evolution of these features is complicated by the fact that the phylogenetic relationships among the three traditional rotifer groups (Seisonidea, Monogononta, and Bdelloidea) and Acanthocephala remain unresolved. Here, I present maximum likelihood and Bayesian analyses of rotifer–acanthocephalan relationships using both the protein-coding gene hsp82 and a combined data set of hsp82 and ribosomal small subunit (SSU) DNA sequences, using nucleotide and codon based models of evolution. Statistical analysis of the phylogenetic support for any of the likely relationships among rotifer groups suggests that more than a combined hsp82 + SSU data set will be needed to resolve rotifer–acanthocephalan phylogeny with any degree of certainty.  相似文献   

10.
Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S–23S ITS) and phycocyanin intergenic spacer (PC‐IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC‐IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC‐IGS and 16S–23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC‐IGS. Thus, PC‐IGS is a suitable marker, along with 16S–23S ITS for phylogenetic studies of cyanobacteria.  相似文献   

11.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

12.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA. Correspondence to: E. Douzery  相似文献   

13.
本文将12S rRNA基因序列分析应用于研究若干重要蜘蛛类群的系统关系,以对传统的分类研究结论进行验证和补充,并且探讨12S rRNA基因序列分析在蜘蛛系统发生研究中的适用性。根据12S rRNA基因第3结构域构建的分子系统树得出结论:1.圆网类(即妖面蛛总科与园蛛总科)并非单系;2.隙蛛与暗蛛较漏斗蛛具有更近的亲缘关系;3.壁钱和拟壁钱并不近缘;4.有筛器类蜘蛛为复系类群;5.12S rRNA基因第3结构域片段对推断近缘科属间的系统发生关系是有效的遗传标记。  相似文献   

14.
To gain insights into the relationships among anostracan families, molecular phylogenetic analyses were performed on nuclear (28S D1-D3 ribosomal DNA) and mitochondrial (16S rDNA, COI) gene regions for representatives of seven families and an outgroup. Data matrices used in the analyses included 951 base pairs (bp) of aligned sequences for 28S, 465 bp for 16S, and 658 bp (219 amino acids) for COI. Maximum-parsimony and maximum-likelihood methods were used to construct phylogenetic trees, enabling the evaluation of both previous hypotheses of taxonomic relationships among families based on morphology, and of the relative merits of independent versus simultaneous analyses of multiple data sets for phylogeny construction. Data from various combinations of the gene regions produced relatively congruent patterns of phylogenetic affinity. In most analyses, two monophyletic groups were resolved: one cluster included the families Polyartemiidae, Chirocephalidae, Branchinectidae, Streptocephalidae, and Thamnocephalidae, while the other contained the Artemiidae and Branchipodidae. Comparative analyses showed that combining gene regions in a single matrix generally resulted in increased resolution and support for each cluster relative to those obtained from single-gene analyses. Statistical tests demonstrated that morphology-based hypotheses of relationships among families had poorer support than those determined from molecular data, reflecting the homoplasy in characters used to differentiate families.  相似文献   

15.
Past phylogenetic studies of the monocot order Alismatales left several higher‐order relationships unresolved. We addressed these uncertainties using a nearly complete genus‐level sampling of whole plastid genomes (gene sets representing 83 protein‐coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter‐ and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister‐group of the rest of the order, one likelihood analysis indicated a contrasting Araceae‐sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral‐state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.  相似文献   

16.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

17.
The internal phylogeny of the arachnid order Opiliones is investigated by including molecular data from five molecular markers for ca. 140 species totalling 43 families of Opiliones. The phylogenetic analyses consisted of a direct optimization (DO) approach using POY v. 4 and sophisticated tree search algorithms as well as a static alignment analysed under maximum likelihood. The four Opiliones suborders were well‐supported clades, but subordinal relationships did not receive support in the DO analysis, with the exception of the monophyly of Palpatores (=Eupnoi + Dyspnoi). Maximum‐likelihood analysis strongly supported the traditional relationship of Phalangida and Palpatores: (Cyphophthalmi ((Eupnoi + Dyspnoi) Laniatores)). Relationships within each suborder are well resolved and largely congruent between direct optimization and maximum‐likelihood approaches. Age estimates for the main Opiliones lineages suggest a Carboniferous diversification of Cyphophthalmi, while its sister group, Phalangida, diversified in the Early Devonian. Diversification of all suborders predates the Triassic, and most major lineages predate the Cretaceous. The following taxonomic changes are proposed. Dyspnoi: Hesperonemastoma is transferred to Sabaconidae. Insidiatores: Sclerobunidae stat. nov. is erected as a family for Zuma acuta. © The Willi Hennig Society 2009.  相似文献   

18.
A culture of a unicellular heterotrophic eukaryote was established from pollen‐baited seawater acquired from the nearshore environment in Tromsø, Norway. Light microscopy revealed the production of ectoplasmic nets and reproduction by biflagellated zoospores, as well as binary division. After culturing and subsequent nucleotide extraction, database queries of the isolate's 18S small ribosomal subunit coding region identified closest molecular affinity to Aplanochytrium haliotidis, a pathogen of abalone. Testing of phylogenetic hypotheses consistently grouped our unknown isolate and A. haliotidis among the homoplasious thraustochytrids. Transmission electron microscopy revealed complex cell walls comprised of electron‐dense lamella that formed protuberances, some associated with bothrosomes. Co‐culturing experiments with the marine fungus Penicillium brevicompactum revealed prolonged interactions with hyphal strands. Based on the combined information acquired from electron microscopy, life history information, and phylogenetic testing, we describe our unknown isolate as a novel species. To resolve molecular polyphyly within the aplanochytrids, we erect a gen. nov. that circumscribes our novel isolate and the former A. haliotidis within the thraustochytrids.  相似文献   

19.
Since innovative molecular approaches in phylogenetics solely based on small gene fragments have often generated widely complicated interpretations of crayfish diversity, we propose a geometric morphometric study integrated with previous molecular data to provide robust estimates of phylogeny and classification of the Austropotamobius pallipes complex, genetically divided into several species and subspecies. We discuss whether cephalothorax shape variation can show phylogenetic signals congruent to those derived from analyses of mitochondrial and nuclear markers. Our results support the hypothesis that carapace form is potentially informative in the reconstruction of crayfish phylogeny. In the phenetic analyses, populations collected within the Italian territory form different unexpected clusters, each involving distant populations of different genetic haplogroups, suggesting a within‐species convergence probably due to a series of local adaptations. The phylogenetic analysis performed using a neighbour‐joining algorithm showed interesting relationships amongst the studied populations. In particular, the geometric morphometric matrices showed a slight congruence with some genetic distances, allowing the discrimination of three major lineages: (1) Istran + Apennine group; (2) Arno group; (3) north‐western group. Finally, our observations support some molecular data with a lighter phylogenetic signal that do not suggest a strong separation of A. pallipes into clades and sub‐clades.  相似文献   

20.
Molecular phylogenetic analyses were conducted for the insect order Odonata with a focus on testing the effectiveness of a slowly evolving gene to resolve deep branching and also to examine: (i) the monophyly of damselflies (the suborder Zygoptera); and (ii) the phylogenetic position of the relict dragonfly Epiophlebia superstes. Two independent molecular sources were used to reconstruct phylogeny: the 16S rRNA gene on the mitochondrial genome and the 28S rRNA gene on the nuclear genome. A comparison of the sequences showed that the obtained 28S rDNA sequences have evolved at a much slower rate than the 16S rDNA, and that the former is better than the latter for resolving deep branching in the Odonata. Both molecular sources indicated that the Zygoptera are paraphyletic, and when a reasonable weighting for among‐site rate variation was enforced for the 16S rDNA data set, E. superstes was placed between the two remaining major suborders, namely, Zygoptera and Anisoptera (dragonflies). Character reconstruction analysis suggests that multiple hits at the rapidly evolving sites in the 16S rDNA degenerated the phylogenetic signals of the data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号