首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
The olive shells of the genus Amalda comprises readily recognized species of marine neogastropod mollusks found around the world. The New Zealand Amalda fauna has particular notoriety as providing one of the best demonstrations of evolutionary morphological stasis, a prerequisite for punctuated equilibrium theory. An excellent fossil record includes representation of three extant endemic Amalda species used to explore patterns of form change. However, the phylogenetic relationship of the New Zealand Amalda species and the timing of their lineage splitting have not been studied, even though these would provide valuable evidence to test predictions of punctuated equilibrium. Here, we use entire mitogenome and long nuclear rRNA gene cassette data from 11 Amalda species, selected from New Zealand and around the world in light of high rates of endemicity among extant and fossil Amalda. Our inferred phylogenies do not refute the hypothesis that New Zealand Amalda are a natural monophyletic group and therefore an appropriate example of morphological stasis. Furthermore, estimates of the timing of cladogenesis from the molecular data for the New Zealand group are compatible with the fossil record for extant species and consistent with expectations of punctuated equilibrium.  相似文献   

2.
A series of recent studies on extant coelacanths has emphasised the slow rate of molecular and morphological evolution in these species. These studies were based on the assumption that a coelacanth is a ‘living fossil’ that has shown little morphological change since the Devonian, and they proposed a causal link between low molecular evolutionary rate and morphological stasis. Here, we have examined the available molecular and morphological data and show that: (i) low intra‐specific molecular diversity does not imply low mutation rate, (ii) studies not showing low substitution rates in coelacanth are often neglected, (iii) the morphological stability of coelacanths is not supported by paleontological evidence. We recall that intra‐species levels of molecular diversity, inter‐species genome divergence rates and morphological divergence rates are under different constraints and they are not necessarily correlated. Finally, we emphasise that concepts such as ‘living fossil’, ‘basal lineage’, or ‘primitive extant species’ do not make sense from a tree‐thinking perspective. Editor's suggested further reading in BioEssays Tree thinking for all biology: the problem with reading phylogenies as ladders of progress Abstract  相似文献   

3.
The theory of punctuated equilibrium, which proposes that biological species evolve rapidly when they originate rather than gradually over time, has sparked intense debate between palaeontologists and evolutionary biologists about the mode of character evolution and the importance of natural selection. Difficulty in interpreting the fossil record prevented consensus, and it remains disputed as to what extent gradual change in established species is responsible for phenotypic differences between species. Against the historical background of the concept of evolution concentrated in speciation events, we review attempts to investigate tempo and mode of evolution using present-day species since the introduction of the theory of punctuated equilibrium in 1972. We discuss advantages, disadvantages, and prospects of using neontological data, methodological advances, and the findings of some recent studies.  相似文献   

4.
5.
The hypothesis of punctuated equilibrium proposes that most phenotypic evolution occurs in rapid bursts associated with speciation events. Several methods have been developed that can infer punctuated equilibrium from molecular phylogenies in the absence of paleontological data. These methods essentially test whether the variance in phenotypes among extant species is better explained by evolutionary time since common ancestry or by the number of estimated speciation events separating taxa. However, apparent "punctuational" trait change can be recovered on molecular phylogenies if the rate of phenotypic evolution is correlated with the rate of speciation. Strong support for punctuational models can arise even if the underlying mode of trait evolution is strictly gradual, so long as rates of speciation and trait evolution covary across the branches of phylogenetic trees, and provided that lineages vary in their rate of speciation. Species selection for accelerated rates of ecological or phenotypic divergence can potentially lead to the perception that most trait divergence occurs in association with speciation events.  相似文献   

6.
Fryer, Greenwood & Peake (1983) have recently criticized my analysis of morphological variation in a sequence of Plio-Pleistocene freshwater molluse faunas from the Turkana Basin in E Africa, and question my conclusions that these faunas document speciation and the punctuated equilibrium model of evolutionary change. Unfortunately, these authors misinterpret the nature of the phenotypic variation in African freshwater molluscs and its relevance to my study, and apparently misunderstand punctuated equilibrium theory. Although the majority of their criticisms are therefore erroneous, certain of the points they raise are important: they are addressed here.  相似文献   

7.
A running controversy in evolutionary thought was Eldredge and Gould's punctuated equilibrium model, which proposes long periods of morphological stasis interspersed with rapid bursts of dramatic evolutionary change. One of the earliest and most iconic pieces of research in support of punctuated equilibrium is the work of Williamson on the Plio-Pleistocene molluscs of the Turkana Basin. Williamson claimed to have found firm evidence for three episodes of rapid evolutionary change separated by long periods of stasis in a high-resolution sequence. Most of the discussions following this report centered on the topics of (eco)phenotype versus genotype and the possible presence of preservational and temporal artifacts. The debate proved inconclusive, leaving Williamson's reports as one of the empirical foundations of the paradigm of punctuated equilibrium. Here we conclusively show Williamson's original interpretations to be highly flawed. The supposed rapid bursts of punctuated evolutionary change represent artifacts resulting from the invasion of extrabasinal faunal elements in the Turkana palaeolakes during wet phases well known from elsewhere in Africa.  相似文献   

8.
A longstanding debate in evolutionary biology concerns whether species diverge gradually through time or by rapid punctuational bursts at the time of speciation. The theory of punctuated equilibrium states that evolutionary change is characterised by short periods of rapid evolution followed by longer periods of stasis in which no change occurs. Despite years of work seeking evidence for punctuational change in the fossil record, the theory remains contentious. Further there is little consensus as to the size of the contribution of punctuational changes to overall evolutionary divergence. Here we review recent developments which show that punctuational evolution is common and widespread in gene sequence data.  相似文献   

9.
10.
All known rivers in Scotland with recent records of freshwater pearl mussels Margaritifera margaritifera were surveyed in 2013–2015 using a standard methodology. Freshwater pearl mussel populations were classed as: (i) apparently extinct in 11 rivers, (ii) not successfully recruiting in 44 rivers, and (iii) evidence of recent successful recruitment in 71 rivers. On a regional basis, a high proportion of extant populations were located in North and West Scotland. In all regions extant populations were characterised by low pearl mussel densities, with 97 of 115 extant Scottish populations defined as ‘rare’ (0.1–0.9 mussels per 1 m 2) or ‘scarce’ (1.0–9.9 mussels per 1 m 2). Only 18 Scottish rivers now hold pearl mussel populations in densities that are considered to be ‘common’ (10–19.9 mussels per 1 m 2) or ‘abundant’ (>20 mussels per 1 m 2). Based on survey evidence, the number of apparently extinct pearl mussel populations in Scottish rivers is now 73. The decline is particularly pronounced in the West Highlands and Western Isles strongholds. The key threats are: (i) pearl fishing, (ii) low host fish densities, (iii) pollution/water quality, (iv) climate change and habitat loss, (v) hydrological management/river engineering and (vi) ‘other factors’, such as non-native invasive species. Over the last 100 years this endangered species has been lost from much of its former Holarctic range. Scotland’s extant M. margaritifera populations continue to be of international importance, but their continued decline since the first national survey in 1998 is of great concern.  相似文献   

11.
A. Turner 《Human Evolution》1986,1(5):419-430
Human evolution is considered from the perspective of the recognition concept of species, which views species as an epiphenomenon of shared fertilisation systems in sexually reproducing organisms. It is argued that this concept predicts the controversial pattern of punctuated equilibrium, and offers an understanding of the hominid fossil evidence in line with that pattern. Changes in the nature of the fertilization system in the human lineage over time are discussed in relation to the pattern of morphological continuity between proposed species.  相似文献   

12.
We present a complete phylogeny of macroperforate planktonic foraminifer species of the Cenozoic Era (∼65 million years ago to present). The phylogeny is developed from a large body of palaeontological work that details the evolutionary relationships and stratigraphic (time) distributions of species‐level taxa identified from morphology (‘morphospecies’). Morphospecies are assigned to morphogroups and ecogroups depending on test morphology and inferred habitat, respectively. Because gradual evolution is well documented in this clade, we have identified many instances of morphospecies intergrading over time, allowing us to eliminate ‘pseudospeciation’ and ‘pseudoextinction’ from the record and thereby permit the construction of a more natural phylogeny based on inferred biological lineages. Each cladogenetic event is determined as either budding or bifurcating depending on the pattern of morphological change at the time of branching. This lineage phylogeny provides palaeontologically calibrated ages for each divergence that are entirely independent of molecular data. The tree provides a model system for macroevolutionary studies in the fossil record addressing questions of speciation, extinction, and rates and patterns of evolution.  相似文献   

13.
The big‐scale sand smelt Atherina boyeri lives in fresh water, brackish water and sea water of the western Atlantic Ocean and Mediterranean Sea. Previous studies concerning distribution, biometric characters and genetic molecular markers have suggested the possible existence of two or even three different groups or species of sand smelt, one ‘lagoon’ type and one (or two – punctuated and non‐punctuated on the flanks) ‘marine’ type. In this study, the presence and the localization of an insertion was described, c. 200 bp in length, in the mtDNA of the lagoon and marine punctuated specimens of A. boyeri and its absence in the marine non‐punctuated specimens, as well as in other two congeneric species, Atherina hepsetus and Atherina presbyter, and in the atheriniform Menidia menidia. The intergenic spacer is located between the tRNAGlu and cytochrome b (cyt b) genes and shares a c. 50% sequence similarity with cyt b. The distribution and the features of the intergenic spacer suggest that it might have originated from an event of gene duplication, which involved the cyt b gene (or, more likely, a part of it) and which took place in the common ancestor of the lagoon and the marine punctuated specimens. The data obtained therefore support the hypothesis of the existence of three cryptic and, or sibling species within the A. boyeri taxon and provide a genetic molecular marker to distinguish them.  相似文献   

14.
The mode of tooth development displayed in Chondrichthyans (sharks, rays and holocephalans), one of frequent tooth replacement, was possible once a dental lamina had evolved, and since 1982 this has been known as the odontode regulation theory after Reif. Today, Reif's concepts need to be transformed into those of modern biology, the crosstalk between epithelium and mesenchyme, for the regulation of timing, spacing and shape of vertebrate teeth. Although Reif's proposed ‘primordial tissue’ may be the only site of progenitor cells, to restrict odontogenic potential to time-specific sites (protogerms), as has been suggested in the sequential addition tooth (SAT) model, very little data are available. Here, his model of alternate tooth replacement files has been interpreted as an integrated tooth addition unit of two adjacent files (SAT) unit for alternate replacement of teeth, regulated by putative, precisely timed gene expression for activation and inhibition. We have provided new data on patterns of tooth succession in dentitions of extant sharks and rays to compare with those of Reif. Using a phylogeny combined from molecular and morphological data, it is suggested that the alternate tooth addition and replacement model is derived within Chondrichthyes, and diversified from single file tooth addition of the stem chondrichthyans.  相似文献   

15.
The 24 extant crocodylian species are the remnants of a once much more diverse and widespread clade. Crocodylomorpha has an approximately 230 million year evolutionary history, punctuated by a series of radiations and extinctions. However, the group's fossil record is biased. Previous studies have reconstructed temporal patterns in subsampled crocodylomorph palaeobiodiversity, but have not explicitly examined variation in spatial sampling, nor the quality of this record. We compiled a dataset of all taxonomically diagnosable non‐marine crocodylomorph species (393). Based on the number of phylogenetic characters that can be scored for all published fossils of each species, we calculated a completeness value for each taxon. Mean average species completeness (56%) is largely consistent within subgroups and for different body size classes, suggesting no significant biases across the crocodylomorph tree. In general, average completeness values are highest in the Mesozoic, with an overall trend of decreasing completeness through time. Many extant taxa are identified in the fossil record from very incomplete remains, but this might be because their provenance closely matches the species’ present‐day distribution, rather than through autapomorphies. Our understanding of nearly all crocodylomorph macroevolutionary ‘events’ is essentially driven by regional patterns, with no global sampling signal. Palaeotropical sampling is especially poor for most of the group's history. Spatiotemporal sampling bias impedes our understanding of several Mesozoic radiations, whereas molecular divergence times for Crocodylia are generally in close agreement with the fossil record. However, the latter might merely be fortuitous, i.e. divergences happened to occur during our ephemeral spatiotemporal sampling windows.  相似文献   

16.
Six new fossils of Micromalthus (Coleoptera: Archostemata) from Dominican amber are compared with extant and previously described fossil micromalthid beetles. The amber inclusions are well preserved and all important morphological features are visible. Taking into account the morphological variability of the extant species Micromalthus debilis LeConte, 1878 , it is not possible to find any morphological features that distinguish the fossils from the extant species. This also applies to the Dominican amber inclusion described as Micromalthus anasi Perkovsky, 2008, which therefore is considered a junior synonym of M. debilis. The lack of morphological change in M. debilis over time might possibly be explained by unusually stable environmental conditions, as this species occupies a very specialized ecological niche in decaying timber. A general survey of fossil insects indistinguishable from extant species is presented. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 300–311.  相似文献   

17.
To provide empirical evidence of species boundaries and the role of climatic change in affecting evolution, we documented evolution of the sagebrush vole, Lemmiscus curtatus, through hundreds of thousands of years by following populations from the middle Pleistocene to the present. We found that: (i) extant representatives of the species culminate a morphological transition that was initiated within an unusually arid and warm interglacial period, perhaps related to the shift from glacial-interglacial cycles dominated by a 41,000 year periodicity to those dominated by a 100,000 year rhythm; and (ii) sympatry of extant and extinct morphotypes persisted for more than 800,000 years. This exceptionally detailed tracing of extinct populations into extant ones suggests that species such as the one we studied are real entities in space, that their boundaries become fuzzy (although potentially diagnosable) through time and that unusual climatic warming may initiate significant evolutionary change manifested at the morphological level.  相似文献   

18.
C. Quintyn 《HOMO》2009,60(4):307-463
The species problem is one of the most complex and enduring problems plaguing evolutionary biology in general and human paleontology in particular. In the past 50 years, conceptions of species have diverged and speciated analogous to the present, largely accepted view of the hominin phylogeny. Conventional wisdom supports a “bushy” hominin phylogeny. However, chaos reigns because there is no agreed-upon methodology used to delimit species taxa in paleontology. This dispute is complicated by the ever-present intraspecific and interspecific morphological variation, which is itself exacerbated by other types of variation, including behavioral, ecological, geographical and temporal. When two or more of these forms of variation are used to delimit “new” extant or fossil species, any decision arrived at might be construed as arbitrary. This paper proposes that temporary cessation in assigning new names should be considered based on several critical problems: (1) the explosion of conceptions of a “species” arising from disagreements regarding species definitions, (2) differing interpretations of population variation, which lead to difficulty in interpreting hybridization in nature, leading in turn to the underestimation or overestimation of species, (3) the problem of modes of speciation being confounded with criteria used to distinguish among species, e.g., punctuated equilibrium posits high-speciation rates, and (4) the most common of all human traits, vanity.  相似文献   

19.
Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as "living fossils" due to an apparent slowdown in rates since the Devonian. We find that morphological rates are highly heterogeneous across the phylogeny and recover a general pattern of decreasing rates along the phylogenetic backbone toward living taxa, from the Devonian until the present. Compared with previous work, we are able to report a more nuanced picture of lungfish evolution using these new methods.  相似文献   

20.
Abstract

A reappraisal of the conservation status of the New Zealand frog fauna is presented using the 2008 version of the New Zealand Threat Classification System. Of New Zealand's four extant endemic species, three are judged to be ‘Threatened’ (Leiopelma hamiltoni being ‘Nationally Critical’, and L. pakeka and L. archeyi being ‘Nationally Vulnerable’) and one ‘At Risk’ (L. hochstetteri ‘Declining’). Three Leiopelma species are listed as extinct—they are known from bone deposits in caves throughout the country until some time in the last 1000 years. Three introduced and naturalised Litoria species are abundant in New Zealand although two (L. aurea and L. raniformis) are threatened in their country of origin (Australia). An additional unidentified frog taxon from northern Great Barrier Island is listed as ‘Data Deficient’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号