首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed "protein misfolding disorders." These diseases differ widely in frequency and impact different classes of neurons. Heat shock proteins provide a line of defense against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration in animal models. Analysis of constitutively expressed heat shock proteins revealed variable levels of Hsc70 and Hsp27 in different classes of neurons in the adult rat brain. The differing levels of these constitutively expressed heat shock proteins in neuronal cell populations correlated with the relative frequencies of the previously mentioned neurodegenerative diseases.  相似文献   

2.
3.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

4.
5.
1. Alzheimer's disease (AD) is a neurodegenerative disorder that affects the cognitive function of the brain. Pathological changes in AD are characterized by the formation of amyloid plaques and neurofibrillary tangles as well as extensive neuronal loss. Abnormal proteolytic processing of amyloid precursor protein (APP) is the central step that leads to formation of amyloid plaque, neurofibrillary tangles, and neuronal loss.2. The plaques, which accumulate extracellularly in the brain, are composed of aggregates and cause direct neurotoxic effects and/or increase neuronal vulnerability to excitotoxic insults. The aggregates consist of soluble pathologic amyloid beta peptides AP[1–42] and AP[1–43] and soluble nonpathologic AP[1–40]. Both APP and AP interact with ion transport systems. AP induces a wide range of effects as the result of activating a cascade of mechanisms.3. The major mechanisms proposed for AP-induced cytotoxicity involve the loss of Ca2+ homeostasis and the generation of reactive oxygen species (ROS). The changes in Ca2+ homeostasis could be the result of (1) changes in endogenous ion transport systems, e.g. Ca2+ and K+ channels and Na+/K+-ATPase, and membrane receptor proteins, such as ligand-driven ion channels and G-protein-driven releases of second messengers, and (2) formation of heterogeneous ion channels.4. The consequences of changes in Ca2+-homeostasis-induced generation of ROS are (a) direct modification of intrinsic ion transport systems and their regulatory mechanisms, and (b) indirect effects on ion transport systems via peroxidation of phospholipids in the membrane, inhibition of phosphorylation, and reduction of ATP levels and cytoplasmic pH.5. We propose that in AD, AP with its different conformations alters cell regulation by modifying several ion transport systems and also by forming heterogeneous ion channels. The changes in membrane transport systems are proposed as early steps in impairing neuronal function preceding plaque formation. We conclude that these changes damage the membrane by compromising its integrity and increasing its ion permeability. This mechanism of membrane damage is not only central for AD but also may explain other malfunctioned protein-processing–related pathologies.  相似文献   

6.
7.
In trying to rectify the differences in the risk, onset, and progression of neurodegenerative diseases between men and women, the gonadal hormone estrogen has been the primary focus of investigation for many years. Although this gender difference may encompass disparate and overlapping reasons, estrogen and signaling events mediated by its receptor have been shown to be neuroprotective in a number of neurodegenerative disease models such as Alzheimer's, Parkinson's, and Schizophrenia. Although data from human studies remains highly controversial, a large body of research findings suggests that this hormone plays a pivotal role in retarding and preventing the formation of neurodegenerative diseases through its receptor. By activating common intracellular signaling pathways and initiating "cross talk" with neurotrophins, estrogen plays an influential role in neuronal survival from injuries induced by ischemia or other environmental insults. Gaining a better understanding of these estrogen receptor mediated neuroprotective mechanisms may lead to new therapeutic strategies for the treatment or prevention of neurodegenerative diseases.  相似文献   

8.
The ubiquitin‐independent protein quality control of matrix proteins of the mitochondrion is well characterized and until recently the mitochondrion was considered a ‘ubiquitination‐free’ organelle. However, a number of studies now indicate multiple roles of the ubiquitin–proteasome pathway in the regulation and maintenance of mitochondrial integrity. Of particular interest to this review is the finding of a mitochondrial ubiquitin‐dependent protein quality control and that this pathway may share similarity to the e ndoplasmic r eticulum‐a ssociated d egradation (ERAD) pathway that acts to eliminate misfolded proteins from the lumen of the endoplasmic reticulum. The potential cross‐talk between the ubiquitin‐dependent and ‐independent protein quality controls and their implications in ageing and neurodegenerative diseases, notably in Parkinson's disease, are discussed.  相似文献   

9.
Phospholipase A2 (PLA2) belongs to a family of enzymes that catalyze the cleavage of fatty acids from the sn-2 position of phospholipids. There are more than 19 different isoforms of PLA2 in the mammalian system, but recent studies have focused on three major groups, namely, the group IV cytosolic PLA2, the group II secretory PLA2 (sPLA2), and the group VI Ca(2+)-independent PLA2. These PLA2s are involved in a complex network of signaling pathways that link receptor agonists, oxidative agents, and proinflammatory cytokines to the release of arachidonic acid (AA) and the synthesis of eicosanoids. PLA2s acting on membrane phospholipids have been implicated in intracellular membrane trafficking, differentiation, proliferation, and apoptotic processes. All major groups of PLA2 are present in the central nervous system (CNS). Therefore, this review is focused on PLA2 and AA release in neural cells, especially in astrocytes and neurons. In addition, because many neurodegenerative diseases are associated with increased oxidative and inflammatory responses, an attempt was made to include studies on PLA2 in cerebral ischemia, Alzheimer's disease, and neuronal injury due to excitotoxic agents. Information from these studies has provided clear evidence for the important role of PLA2 in regulating physiological and pathological functions in the CNS.  相似文献   

10.
11.
12.
13.
Several lines of evidence, including an increased level of lipid peroxidation and the depletion of antioxidant molecules like as glutathione (GSH), indicate that oxidative stress plays an important role in the pathogenesis of several neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). We previously observed a significant increased level of DNA oxidative damage in peripheral blood cells of PD patients, with respect to controls, moreover, the activity of glutathione transferases (GSTs) measured in circulating plasma was higher in controls than in PD patients, suggesting a lower enzymatic protection in PD individuals. Among human GSTs, glutathione transferase A4-4 displays a high catalitic activity towards 4-hydroxy-2-nonenal (HNE), a marker of lipid peroxidation whose levels have been found significantly increased in the substantia nigra of Parkinson's disease patients, in respect to controls. We performed this study to determine the presence of allelic variants of functional interest in the coding region of the hGSTA4 gene on 60 PD patients and 60 healthy controls. By the combined effort of polymerase chain reaction/single-strand conformation polymorphisms (PCR/SSCP) techniques, we observed a single nucleotide polymorphism (SNP) G351A leading to the silent mutation Gln117Gln. No significant difference was observed in the distribution of this polymorphism between PD individuals and controls, moreover, we did not observe any other polymorphism in the hGSTA4 gene in our population. Further studies are required to test the role played by both factors regulating the level of the expression of the hGSTA4 gene and any possible post-translational modification of the protein, in the protection against oxidative damage in neuronal cells.  相似文献   

14.
The optic nerve, as a part of the central nervous system (CNS), has been used to study axonal transport for decades. The present study has concentrated on the axonal transport of synaptic vesicle proteins in the optic nerve, using the “stop-flow/nerve crush” method. After blocking fast axonal transport, distinct accumulations of synaptic vesicle proteins developed during the first hour after crush-operation and marked increases were observed up to 8 h postoperative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immunoincubated sections, revealed that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was much higher (up to 80–90%) for the transmembrane proteins than that for surface adsorbed proteins (only 10–20%). The pattern of axonal transport in the optic nerve was comparable to that in the sciatic nerve. However, clathrin and Rab3a immunoreactivities were accumulated in much lower amounts than that in the sciatic nerve. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. A differential distribution of synaptobrevin I and II, however, was observed in the optic nerve axons; synaptobrevin I was present in large-sized axons, while synaptobrevin II immunoreactivity was present in most axons, including the large ones. The two isoforms were, thus, partially colocalized. The results demonstrate that (1) cytofluorimetric scanning techniques could be successfully used to study axonal transport not only in peripheral nerves, but also in the CNS; (2) synaptic vesicles are transported with fast axonal transport in this nerve; and (3) some differences were noted compared with the sciatic nerve, especially for Rab3a and clathrin. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 237–250, 1997.  相似文献   

15.
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin‐based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin‐based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time‐lapse microscopy using green fluorescent protein‐LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin‐based motility moved away from LC3‐positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin‐based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.  相似文献   

16.
17.
18.
19.
The purpose of this review is to outline the main role of nerve growth factor (NGF) in the visual system and particularly in the ocular surface in physiological and pathological conditions. The present review of experimental and clinical studies will highlight old and recent strategies for treating ocular surface and tear disorders with NGF.  相似文献   

20.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号