首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

2.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

3.
The rate at which CO2 is released from woody debris post-clearcut affects the long term carbon consequences of such disturbances. Changes in microclimate post-clearcut may alter the rate of woody debris decomposition from that in a mature forest. However, very few studies have explored post-disturbance rates of woody debris respiration and the possible influence of an altered microclimate, and even fewer have considered the role of log position in influencing rates of respiration. This study explored the effects of log position and microclimate variability on the rates of coarse woody debris (CWD) respiration. The rates of respiration of downed Norway spruce (Picea abies) logs were repeatedly measured in situ using an LI-6200 gas analyzer. Treatments included native logs in the clearcut site, native logs in a neighboring mature spruce stand, and logs transferred from the clearcut site to the mature spruce stand. The transfer logs showed the highest rates of respiration (0.44 ± 0.03 g COm?2 log surface h?1), followed by the clearcut logs (0.36 ± 0.02 g CO2 m?2 log surface h?1), and spruce stand logs (0.30 ± 0.02 g CO2 m?2 log surface h?1) (P < 0.01). The boost in respiration found in the transfer treatment group was best explained by increases in log water content, while the slower rate of respiration in the spruce stand logs was best explained by the log’s contact/non-contact with the ground prior to the start of the observational campaign. CWD respiration was found to represent 18 ± 3 % of total daytime ecosystem respiration (R eco).  相似文献   

4.
Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C m?2 yr?1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol m?2 s?1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of ?2.3 μmol m?2 s?1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day‐time NECB just below 1000 μmol m?2 s?1. The analyses of the diurnal and seasonal data and preliminary geological and gas‐geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2‐rich geofluid circulation.  相似文献   

5.
Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen‐fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m?2 and 36 g N m?2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6–9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5–7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m?2 yr?1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration.  相似文献   

6.
We calculated carbon budgets for a chronosequence of harvested jack pine (Pinus banksiana Lamb.) stands (0‐, 5‐, 10‐, and~29‐year‐old) and a~79‐year‐old stand that originated after wildfire. We measured total ecosystem C content (TEC), above‐, and belowground net primary productivity (NPP) for each stand. All values are reported in order for the 0‐, 5‐, 10‐, 29‐, and 79‐year‐old stands, respectively, for May 1999 through April 2000. Total annual NPP (NPPT) for the stands (Mg C ha?1 yr?1±1 SD) was 0.9±0.3, 1.3±0.1, 2.7±0.6, 3.5±0.3, and 1.7±0.4. We correlated periodic soil surface CO2 fluxes (RS) with soil temperature to model annual RS for the stands (Mg C ha?1 yr?1±1 SD) as 4.4±0.1, 2.4±0.0, 3.3±0.1, 5.7±0.3, and 3.2±0.2. We estimated net ecosystem productivity (NEP) as NPPT minus RH (where RH was calculated using a Monte Carlo approach as coarse woody debris respiration plus 30–70% of total annual RS). Excluding C losses during wood processing, NEP (Mg C ha?1 yr?1±1 SD) for the stands was estimated to be ?1.9±0.7, ?0.4±0.6, 0.4±0.9, 0.4±1.0, and ?0.2±0.7 (negative values indicate net sources to the atmosphere.) We also calculated NEP values from the changes in TEC among stands. Only the 0‐year‐old stand showed significantly different NEP between the two methods, suggesting a possible mismatch for the chronosequence. The spatial and methodological uncertainties allow us to say little for certain except that the stand becomes a source of C to the atmosphere following logging.  相似文献   

7.
Long-term carbon exchange in a sparse, seasonally dry tussock grassland   总被引:6,自引:0,他引:6  
Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long‐term mean=646 mm). The vegetation was sparse with total above‐ground biomass of only 1410 g m?2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m?2 day?1, and it occurred before mid‐summer in both years. On an annual basis, for the dry year, 9 g C m?2 was lost to the atmosphere. During the wet year, 41 g C m?2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled‐up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well‐watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral‐N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m?3) to the driest value obtained (0.04 m3 m?3). Rainfall after periods of drought resulted in large, but short‐lived, respiration pulses that were curvilinearly related to the increase in root‐zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term.  相似文献   

8.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   

9.
Timber harvests remove a significant portion of ecosystem carbon. While some of the wood products moved off‐site may last past the harvest cycle of the particular forest crop, the effect of the episodic disturbances on long‐term on‐site carbon sequestration is unclear. The current study presents a 25 year carbon budget estimate for a typical commercial loblolly pine plantation in North Carolina, USA, spanning the entire rotation cycle. We use a chronosequence approach, based on 5 years of data from two adjacent loblolly pine plantations. We found that while the ecosystem is very productive (GEP up to 2900 g m?2 yr?1, NEE at maturity about 900 g C m?2 yr?1), the production of detritus does not offset the loss of soil C through heterotrophic respiration (RH) on an annual basis. The input of dead roots at harvest may offset the losses, but there remain significant uncertainties about both the size and decomposition dynamics of this pool. The pulse of detritus produced at harvest resulted in a more than 60% increase in RH. Contrary to expectations, the peak of RH in relation to soil respiration (SR) did not occur immediately after the harvest disturbance, but in years 3 and 4, suggesting that a pool of roots may have remained alive for the first few years. On the other hand, the pulse of aboveground RH from coarse woody debris lasted only 2 years. The postharvest increase in RH was offset by a decrease in autotrophic respiration such that the total ecosystem respiration changed little. The observed flux rates show that even though the soil C pool may not necessarily decrease in the long‐term, old soil C is definitely an active component in the site C cycle, contributing about 25–30% of the RH over the rotation cycle.  相似文献   

10.
We performed a detailed study on the carbon build‐up over the 140‐year‐long chronosequence of the Damma glacier forefield, Switzerland, to gain insights into the organic carbon dynamics during the initial stage of soil formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable isotopic compositions, as well as molecular‐level composition of the bulk soils, and recalcitrance parameters of carbon in different fractions. The chronosequence was divided into three age groups, separated by small end moraines that resulted from two glacier re‐advances. The net ecosystem carbon balance (NECB) showed an exponential increase over the last decades, with mean annual values that range from 100 g C m?2 yr?1 in the youngest part to over 300 g C m?2 yr?1 in a 60–80 years old part. However, over the entire 140‐year chronosequence, the NECB is only 20 g C m?2 yr?1, similar to results of other glacier forefield studies. The difference between the short‐ and long‐term NECB appears to be caused by reductions in ecosystem carbon (EC) accumulation during periods with a colder climate. We propose that two complementary mechanisms have been responsible: 1) Reductions in net primary productivity down to 50% below the long‐term mean, which we estimated using reconstructed effective temperature sums. 2) Disturbance of sites near the terminus of the re‐advanced glacier front. Stabilization of soil organic matter appeared to play only a minor role in the coarse‐grained forefield. We conclude that the forefield ecosystem, especially primary productivity, reacts rapidly to climate changes. The EC gained at warm periods is easily lost again in a cooling climate. Our conclusions may also be valid for other high mountain ecosystems and possibly arctic ecosystems.  相似文献   

11.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

12.
Woody debris is abundant in hurricane‐impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line‐intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post‐hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.  相似文献   

13.
This paper investigates the relationship between vascular plant production and CH4 emissions from an arctic wet tundra ecosystem in north‐east Greenland. Light intensity was manipulated by shading during three consecutive growing seasons (1998–2000). The shading treatment resulted in lower carbon cycling in the ecosystem as mean seasonal net ecosystem exchange (NEE) decreased from ?336 to ?196 mg CO2 m?2 h?1 and from ?476 to ?212 mg CO2 m?2 h?1 in 1999 and 2000, respectively, and total ecosystem respiration decreased from 125 to 94 mg CO2 m?2 h?1 in 1999 and from 409 to 306 mg CO2 m?2 h?1 in 2000. Seasonal mean CH4 emissions in controls and shaded plots were, respectively, 6.5 and 4.5 mg CH4 m?2 h?1 in 1999 and 8.3 and 6.2 mg CH4 m?2 h?1 in 2000. We found that CH4 emission was sensitive to NEE and carbon turnover, and it is reasonable to assume that the correlation was due to a combined effect of vegetative CH4 transport and substrate quality coupled to vascular plant production. Total above‐ground biomass was correlated to mean seasonal CH4 emission, but separation into species showed that plant‐mediated CH4 transport was highly species dependent. Potential CH4 production peaked at the same depth as maximum root density (5–15 cm) and treatment differences further suggest that substrate quality was negatively affected by decreased NEE in the shaded plots. The concentration of dissolved CH4 decreased in the control plots as the growing season progressed while it was relatively stable in the shaded plots. This suggests that a progressively better developed root system in the controls increased the capacity to transport CH4 from the soil to the atmosphere. In conclusion, vascular plant photosynthetic rate and subsequent allocation of recently fixed carbon to below‐ground structures seemed to influence both vegetative CH4 transport and substrate quality.  相似文献   

14.
To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ?40 μmol m?2 s?1, which is more than twice the rate found in the dry season (?15 μmol m?2 s?1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 μmol m?2 s?1 being observed at the maximum incoming photon flux densities of 2200 μmol m?2 s?1. This contrasted strongly to the dry period when light saturation occurred with 1500 μmol m?2 s?1 and with maximum canopy photosynthetic rates of only 20 μmol m?2 s?1. Both canopy photosynthetic rates and night‐time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well‐managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone.  相似文献   

15.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

16.
We present the annual patterns of net ecosystem‐atmosphere exchange (NEE) of CO2 and H2O observed from a 447 m tall tower sited within a mixed forest in northern Wisconsin, USA. The methodology for determining NEE from eddy‐covariance flux measurements at 30, 122 and 396 m above the ground, and from CO2 mixing ratio measurements at 11, 30, 76, 122, 244 and 396 m is described. The annual cycle of CO2 mixing ratio in the atmospheric boundary layer (ABL) is also discussed, and the influences of local NEE and large‐scale advection are estimated. During 1997 gross ecosystem productivity (947?18 g C m?2 yr?1), approximately balanced total ecosystem respiration (963±19 g C m?2 yr?1), and NEE of CO2 was close to zero (16±19 g C m?2 yr?1 emitted into the atmosphere). The error bars represent the standard error of the cumulative daily NEE values. Systematic errors are also assessed. The identified systematic uncertainties in NEE of CO2 are less than 60 g C m?2 yr?1. The seasonal pattern of NEE of CO2 was highly correlated with leaf‐out and leaf‐fall, and soil thaw and freeze, and was similar to purely deciduous forest sites. The mean daily NEE of CO2 during the growing season (June through August) was ?1.3 g C m?2 day?1, smaller than has been reported for other deciduous forest sites. NEE of water vapor largely followed the seasonal pattern of NEE of CO2, with a lag in the spring when water vapor fluxes increased before CO2 uptake. In general, the Bowen ratios were high during the dormant seasons and low during the growing season. Evapotranspiration normalized by potential evapotranspiration showed the opposite pattern. The seasonal course of the CO2 mixing ratio in the ABL at the tower led the seasonal pattern of NEE of CO2 in time: in spring, CO2 mixing ratios began to decrease prior to the onset of daily net uptake of CO2 by the forest, and in fall mixing ratios began to increase before the forest became a net source for CO2 to the atmosphere. Transport as well as local NEE of CO2 are shown to be important components of the ABL CO2 budget at all times of the year.  相似文献   

17.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

18.
An improved analysis of forest carbon dynamics using data assimilation   总被引:9,自引:0,他引:9  
There are two broad approaches to quantifying landscape C dynamics – by measuring changes in C stocks over time, or by measuring fluxes of C directly. However, these data may be patchy, and have gaps or biases. An alternative approach to generating C budgets has been to use process‐based models, constructed to simulate the key processes involved in C exchange. However, the process of model building is arguably subjective, and parameters may be poorly defined. This paper demonstrates why data assimilation (DA) techniques – which combine stock and flux observations with a dynamic model – improve estimates of, and provide insights into, ecosystem carbon (C) exchanges. We use an ensemble Kalman filter (EnKF) to link a series of measurements with a simple box model of C transformations. Measurements were collected at a young ponderosa pine stand in central Oregon over a 3‐year period, and include eddy flux and soil CO2 efflux data, litterfall collections, stem surveys, root and soil cores, and leaf area index data. The simple C model is a mass balance model with nine unknown parameters, tracking changes in C storage among five pools; foliar, wood and fine root pools in vegetation, and also fresh litter and soil organic matter (SOM) plus coarse woody debris pools. We nested the EnKF within an optimization routine to generate estimates from the data of the unknown parameters and the five initial conditions for the pools. The efficacy of the DA process can be judged by comparing the probability distributions of estimates produced with the EnKF analysis vs. those produced with reduced data or model alone. Using the model alone, estimated net ecosystem exchange of C (NEE)=?251±197 g C m?2 over the 3 years, compared with an estimate of ?419±29 g C m?2 when all observations were assimilated into the model. The uncertainty on daily measurements of NEE via eddy fluxes was estimated at 0.5 g C m?2 day?1, but the uncertainty on assimilated estimates averaged 0.47 g C m?2 day?1, and only exceeded 0.5 g C m?2 day?1 on days where neither eddy flux nor soil efflux data were available. In generating C budgets, the assimilation process reduced the uncertainties associated with using data or model alone and the forecasts of NEE were statistically unbiased estimates. The results of the analysis emphasize the importance of time series as constraints. Occasional, rare measurements of stocks have limited use in constraining the estimates of other components of the C cycle. Long time series are particularly crucial for improving the analysis of pools with long time constants, such as SOM, woody biomass, and woody debris. Long‐running forest stem surveys, and tree ring data, offer a rich resource that could be assimilated to provide an important constraint on C cycling of slow pools. For extending estimates of NEE across regions, DA can play a further important role, by assimilating remote‐sensing data into the analysis of C cycles. We show, via sensitivity analysis, how assimilating an estimate of photosynthesis – which might be provided indirectly by remotely sensed data – improves the analysis of NEE.  相似文献   

19.
One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night‐time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ‘Constrained Source Optimization’ or CSO, which couples a localized near‐field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher‐order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least‐square fashion. The proposed method was field‐tested using 1 year of 30‐min mean CO2 concentration and CO2 flux measurements collected within a 17‐year‐old (in 1999) even‐aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy‐covariance flux measurements conditioned on large friction velocity, leaf‐level porometry and forest‐floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above‐ground plant components (c. 214 g C m?2 year?1) and forest floor (c. 989 g C m?2 year?1) for estimating gross primary production (c. 1800 g C m?2 year?1) with a NEE of c. 605 g C m?2 year?1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy‐covariance NEE and chamber‐based component flux measurements.  相似文献   

20.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号