首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.  相似文献   

2.
Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.  相似文献   

3.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

4.
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel’s power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.  相似文献   

5.

Background

Malarial incidence, severity, dynamics and distribution of malaria are strongly determined by climatic factors, i.e., temperature, precipitation, and relative humidity. The objectives of the current study were to analyse and model the relationships among climate, vector and malaria disease in district of Visakhapatnam, India to understand malaria transmission mechanism (MTM).

Methodology

Epidemiological, vector and climate data were analysed for the years 2005 to 2011 in Visakhapatnam to understand the magnitude, trends and seasonal patterns of the malarial disease. Statistical software MINITAB ver. 14 was used for performing correlation, linear and multiple regression analysis.

Results/Findings

Perennial malaria disease incidence and mosquito population was observed in the district of Visakhapatnam with peaks in seasons. All the climatic variables have a significant influence on disease incidence as well as on mosquito populations. Correlation coefficient analysis, seasonal index and seasonal analysis demonstrated significant relationships among climatic factors, mosquito population and malaria disease incidence in the district of Visakhapatnam, India. Multiple regression and ARIMA (I) models are best suited models for modeling and prediction of disease incidences and mosquito population. Predicted values of average temperature, mosquito population and malarial cases increased along with the year. Developed MTM algorithm observed a major MTM cycle following the June to August rains and occurring between June to September and minor MTM cycles following March to April rains and occurring between March to April in the district of Visakhapatnam. Fluctuations in climatic factors favored an increase in mosquito populations and thereby increasing the number of malarial cases. Rainfall, temperatures (20°C to 33°C) and humidity (66% to 81%) maintained a warmer, wetter climate for mosquito growth, parasite development and malaria transmission.

Conclusions/Significance

Changes in climatic factors influence malaria directly by modifying the behaviour and geographical distribution of vectors and by changing the length of the life cycle of the parasite.  相似文献   

6.
The rapidly expanding population of Sub-Saharan Africa has led to an increased demand for land in which to live and grow food. The process of rural development continues to change the physical landscape, increasing mosquito breeding and biting rates of the chief vector of malaria in Africa, Anopheles gambiae, a mosquito exquisitely adapted for exploiting people. At the same time, development alters the social environment, affecting wealth, inequality, household entitlements, and male and female workloads, which lead to changes in coping and caring strategies. Despite the fact that malaria is sensitive to changes in the physical and social environment, most control tools use only chemicals (antimalarials and insecticides), not biophysical environmental modifications nor strengthening social systems. While antimalarials and insecticides are extremely effective weapons, they are probably not sustainable in the long term due to the emergence of resistant organisms. Here we suggest that environmental and social management should be considered as part of the suite of interventions against malaria, since these are likely to be effective in specific settings and represent a sustainable approach to malaria control in rural Africa.  相似文献   

7.
Arbovirus vector dynamics and spread are influenced by climatic, environmental and geographic factors. Major Chikungunya and Dengue fever outbreaks occurring the last 10 years have coincided with the expansion of the mosquito vector Aedes albopictus to nearly all the continents. We characterized the ecological (larval development sites, population dynamics, insemination and daily survival rates) and genetic (diversity, gene flow, population structure) features of two Aedes albopictus populations from distinct environments (rural and urban) on Réunion Island, in the South-West Indian Ocean. Microsatellite analysis suggests population sub-structuring Ae. albopictus populations. Two genetic clusters were identified that were significantly linked to natural versus urban habitats with a mixed population in both areas. Ae. albopictus individuals prefer urban areas for mating and immature development, where hosts and containers that serve as larval development sites are readily available and support high population densities, whereas natural environments appear to serve as reservoirs for the mosquito.  相似文献   

8.
Anopheles stephensi Liston s.l. (Diptera: Culicidae) is one of the major vectors of malaria in Pakistan, India, Iran and Afghanistan. In parts of its range this species has shown increases in both relative and absolute abundance in what is hypothesized to be a response to human-mediated environmental change resulting from extensive irrigation. We attempted to detect the molecular genetic signatures of this population instability based on three samples obtained from two villages (149/6R and 111/6R) within an irrigation zone in Punjab Province and from one village (Azakhel) outside the irrigation scheme in Northwest Frontier Province (NWFP), Pakistan, using seven microsatellite loci and 682 basepairs of the mitochondrial CO1 gene. For microsatellite loci, high levels of genetic diversity were observed within populations (mean alleles per locus 10.71-11.57; mean heterozygosity 0.703-0.733). Deviation from Hardy-Weinberg expectations was observed for only two microsatellite loci in 21 tests. No genetic differentiation was observed between populations and average pairwise F(ST) values did not differ significantly from zero for any population pair or either marker system. Tests of population expansion for both mitochondrial and microsatellite loci were inconclusive.  相似文献   

9.
We describe and develop a difference equation model for the dynamics of malaria in a mosquito population feeding on, infecting and getting infected from a heterogeneous population of hosts. Using the force of infection from different classes of humans to mosquitoes as parameters, we evaluate a number of entomological parameters, indicating malaria transmission levels, which can be compared to field data. By assigning different types of vector control interventions to different classes of humans and by evaluating the corresponding levels of malaria transmission, we can compare the effectiveness of these interventions. We show a numerical example of the effects of increasing coverage of insecticide-treated bed nets in a human population where the predominant malaria vector is Anopheles gambiae.  相似文献   

10.
Anopheles minimus A, a major malaria vector in Southeast Asia, is the main target of vector control in this area. The impact of these control measures can be influenced by the population structure of the target species. In rural areas, An. minimus breeds along the banks of small clear-water streams, yet in the suburbs of Hanoi, northern Vietnam, there is an An. minimus population whose immature stages develop in water tanks. This study uses allozyme data (1) to assess the population structure of An. minimus A and (2) to evaluate the taxonomic status of the urban An. minimus population from Hanoi. The population from the suburbs of Hanoi was identified as An. minimus A. Although significant genetic differentiation was observed between rural and urban An. minimus A populations, they have not differentiated substantially by genetic drift. Limited macrogeographical differentiation was observed between two rural populations at distances of more than 1000 km. Consequently, geographical distance is not the primary factor in differentiating An. minimus A populations having the typical breeding ecology. The estimated effective population size is consistent with the moderate macrogeographical differentiation. Furthermore, no genetic structuring was observed between adult mosquitoes having different behaviour. The macrogeographical population structure indicates that genes may spread over large areas, whereas the presence of an 'urban' An. minimus A population shows the ability of this species to adapt to anthropogenic environmental changes.  相似文献   

11.
Sporozoites were detected in naturally infected sibling species of the primary rural vector Anopheles culicifacies complex in two primary health centres (PHCs) and a variant of the urban vector Anopheles stephensi in Mangalore city, Karnataka, south India while carrying out malaria outbreak investigations from 1998–2006. Sibling species of An. culicifacies were identified based on the banding patterns on ovarian polytene chromosomes, and variants of An. stephensi were identified based on the number of ridges on the egg floats. Sporozoites were detected in the salivary glands by the dissection method. Of the total 334 salivary glands of An. culicifacies dissected, 17 (5.08%) were found to be positive for sporozoites. Of the 17 positive samples, 11 were suitable for sibling species analysis; 10 were species A (an efficient vector) and 1 was species B (a poor vector). Out of 46 An. stephensi dissected, one was sporozoite positive and belonged to the type form (an efficient vector). In malaria epidemiology this observation is useful for planning an effective vector control programme, because each sibling species/variant differs in host specificity, susceptibility to malarial parasites, breeding habitats and response to insecticides.  相似文献   

12.
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long‐range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human‐aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.  相似文献   

13.
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases.  相似文献   

14.
Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning.  相似文献   

15.
Plasmodium development within its mosquito vector is an essential step in malaria transmission, as illustrated in world regions where malaria was successfully eradicated via vector control. The innate immune system of most mosquitoes is able to completely clear a Plasmodium infection, preventing parasite transmission to humans. Understanding the biological basis of this phenomenon is expected to inspire new strategies to curb malaria incidence in countries where vector control via insecticides is unpractical, or inefficient because insecticide resistance genes have spread across mosquito populations. Several aspects of mosquito biology that condition the success of the parasite in colonizing its vector begin to be understood at the molecular level, and a wealth of recently published data highlights the multifaceted nature of the mosquito response against parasite invasion. In this brief review, we attempt to provide an integrated view of the challenges faced by the parasite to successfully invade its mosquito host, and discuss the possible intervention strategies that could exploit this knowledge for the fight against human malaria.  相似文献   

16.
Abstract. Mosquitoes were collected on human bait over a 16-month period (September 1988 to December 1989) in an urban and a rural area of Kinshasa, Zaïre. P.falciparum malaria sporozoite rates were determined by ELISA. In the urban area Culex quinquefasciatus accounts for 96% of the 121 bites/ person/night (b/p/n). The only anopheline is Anopheles gambiae, sensu stricto, with an average of 5.1 b/p/n and a sporozoite rate of 1.86%. The entomological inoculation rate (EIR) averages 0.08 infective b/p/n. Malaria transmission is almost interrupted at the end of the dry season. In the rural area mosquito nuisance is small (20b/p/n), almost entirely due to six species of Anopheles including four vectors of malaria: An.gambiae (13.3 b/p/n), An.funestus (2.4b/p/n), An.nili (0.4b/p/n) and An.brunnipes (0.7b/p/n) with mean sporozoite rates of 7.85%, 6.60%, 6.63% and 0.53% respectively. An.paludis (0.4b/p/n) and An.hancocki (0.2b/p/n) were not found infective. Malaria transmission is intense and perennial: the overall EIR varies monthly between 0.60 and 3.29 infective b/p/n. The specific contributions of An.gambiae, An.funestus and An.nili average 1.07, 0.14 and 0.03 infective b/p/n respectively. Malaria transmission peaks during the rainy season in both study areas. The daily mean survival rates for An.gambiae were 0.91 and 0.78 in the rural and urban area, respectively. All An.gambiae examined belonged to the forest cytotype (Coluzzi et al., 1979). Through its effect on the sporozoite rate, the higher vector survival rate in the rural environment appears to be the major determinant of the greater malaria transmission rate in the rural area as compared to urban Kinshasa.  相似文献   

17.
18.
The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector.  相似文献   

19.
20.
Malaria prevalence has been one of the most dramatic outcomes of the occupation of the Brazilian Amazon as exemplified by Northern Mato Grosso, one of the areas of highest malaria prevalence in the Americas in the early 1990s. This paper associates the dynamicsof high malaria prevalence in Northern Mato Grosso with three land uses—small-scalegold mining (garimpos), agricultural colonization/cattle ranching (rural), and urban activities—and their related population characteristics, which constitute riskprofiles. Furthermore, spatial proximity and population mobility between (a) garimpos and new rural settlements and (b) older rural settlements or urban areas are key factors explaining malaria diffusion throughout the region. The paper identifies and characterizes populations at high malaria risk and the effects of land use types on malaria diffusion, providing policymakers with information for regional and local policies to control malaria and minimize its effects on Amazonian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号