首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Fagus grandifolia var. mexicana (Martinez) Little has an extraordinarily restricted distribution in the Mexican montane cloud forests. Isolated Fagus (beech) populations have been recorded in less than 10 small areas (2–40 ha) in the eastern Sierra Madre at altitudes from 1400 to 2000 m. The objectives were to determine tree and seedling age, forest structure, phenology, litterfall patterns and the relationship between mast and climatic variables. Location We report on three Fagus stands at the Acatlan Volcano, Veracruz, Mexico. Methods Changes in forest cover were determined using aerial photographs. Within each stand, basal area, density and tree species composition were determined in a 0.1‐ha band transect. Additionally, litterfall production was quantified and phenophases were recorded monthly over a 3‐year period, and 60 tree cores were collected to determine age distribution and tree‐ring growth. Results The forest was atypical in several respects. Fagus was the only dominant tree species in the crater stand, although in the rim and at the top of the volcano it was codominant with other tree species. Juveniles occurred only on the rim, but there was a seedling bank in the crater. Although forest cover in the area increased between 1968 and 1993, the Fagus stands did not change in size. Leaf production peaked in March and April, and leaf fall occurred from October through February. Litterfall production was the highest in November. During mast years, flowering started in February and between mast events there were no flowers or fruits. Minimum temperatures were highly correlated with Fagus litterfall and leaf fall. Seedlings ranged in age from 2 to 18 years and were 13–60 cm tall. Tree cores ranged from 76 to 120 years, but trees were older than the core samples. Main conclusions Although beech is considered a gap regeneration species that reaches the canopy after alternating periods of release and suppression, the trees in the crater were released when less than 1.5 m tall and have suffered few periods of suppression since. The results indicate that the crater stand was established after a severe disturbance destroyed the existing forest. We conclude that the relict beech population should be able to maintain itself, if not severely disturbed by humans or by climatic changes related to global warming.  相似文献   

2.
Montoya L  Bandala VM  Haug I  Stubbe D 《Mycologia》2012,104(1):175-181
A new milkcap species, Lactarius fuscomarginatus, was found in the subtropical region of central Veracruz (eastern Mexico) associated with two relict populations of Fagus grandifolia var. mexicana. The species is characterized macroscopically by its dark pileus and stipe and by its distant and whitish lamellae with blackish to blackish brown edges. A molecular phylogenetic analyses based on ITS and LSU nucDNA sequences confirms the delimitation of this new taxon and places L. fuscomarginatus in subgenus Gerardii. A detailed morphological comparison is given with similar species.  相似文献   

3.
The current distribution of the endangered Mexican beech [Fagus grandifolia var. mexicana (Martinez) Little] is restricted to relict isolated populations in small remnants of montane cloud forest in northeastern Mexico, and little is known about its associated biota. We sampled bolete diversity in two of these monospecific forests in the state of Hidalgo, Mexico. We compared alpha diversity, including species richness and ensemble structure, and analyzed beta diversity (dissimilarity in species composition) between forests. We found 26 bolete species, five of which are probably new. Species diversity and evenness were similar between forests. Beta diversity was low, and the similarities of bolete samples from within and between forests were not significantly different. These results support the idea that the two forests share a single bolete ensemble with a common history. In contrast, cumulative species richness differed between the forests, implying that factors other than the mere presence of the host species have contributed to shaping the biodiversity of ectomycorrhizal fungi in relict Mexican beech forests.  相似文献   

4.
Aims Changes in the structure and composition of forests, whether caused by natural or anthropic events, alter the microenvironment, sometimes irreversibly. Since the local environment has a direct impact on basic ecological processes, this has become a key component of research. Mexican beech forests (Fagus grandifolia subsp. mexicana) in the Sierra Madre Oriental are restricted to sites with specific climate, soils and topography, making them an ideal natural system for ecological research. The objectives of this study were to identify the relationship between the microenvironment and the tree and shrub structure and composition of Mexican beech forests in the state of Hidalgo, and to compare the floristic similarity of these forests on the country scale using data from seven localities.Methods Specimens were collected for a period of one year at all localities in the state of Hidalgo where beech forests are located. At each locality, five 400 m 2 plots were established, and structural attributes (basal area, coverage, density and species richness) and six environmental variables were measured in the plots. The relationship between structure and microenvironment was estimated by simple correlation and canonic correspondence analysis (CCA). In addition, floristic similarity between different beech forest localities in the Sierra Madre Oriental was estimated by correspondence analysis (CA).Important findings Twenty tree species and eight shrub species were identified; at all localities studied F. grandifolia subsp. mexicana dominated the canopy. The multivariate analysis indicated that (i) in the four localities in the state of Hidalgo, all microenvironmental variables except pH are related to the variation observed in species composition and structure; (ii) the El Gosco locality had both tree and shrub species and microenvironmental factors different from those observed in the Fagus forests at the other localities in the study and (iii) the localities studied in order to draw country-scale comparisons could be divided into three groups by floristic similarity. The first group consisted of the Hidalgo localities, the second of the Veracruz localities, and the third, more different from the others, of the Tamaulipas locality. The results of this study provide the first reference for the relationship between the range of microenvironments and species structure in Mexican beech forests. Microenvironmental conditions in the larger beech forests could be used as a model for designing management and conservation programs for this plant association. Because of its particular ecological and historical characteristics, this association could serve as an example of biodiversity conservation in Mexico.  相似文献   

5.
6.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

7.
Abstract. Forests dominated by Fagus (beech) occur widely in the Northern Hemisphere. Tree species dominant together with beech vary in tolerance of understorey conditions. They are deciduous broad-leaved, evergreen broad-leaved or evergreen coniferous. The frequency and intensity of events that reduce the forest canopy cover are important determinants of the ratio of beech to other species in the canopy. For trees in the understorey and the canopy, stem diameter growth rate is determined by light regime and growing space which in turn are determined by canopy cover. We evaluated increase in stem diameter growth rate as an indicator of sudden reductions in canopy cover and canopy dynamics. We used tree-ring chronologies and calculated an index of growth rate increase (GI) to compare the canopy dynamics of 11 natural beech forests. Per site, the annual average value of GI poorly reflected the effects of dry or cool summers, and it clearly reflected events like tornados and hurricanes that removed substantial canopy cover. Among groups of sites average values of GI were significantly different. In the sites with a lower level of average GI, the establishment of the more shade tolerant tree and shrub species in the understorey was favoured, and subcanopy layers became more dense. On the other hand, higher levels of average GI allowed for more light demanding tree species to reach the canopy.  相似文献   

8.
We examined the effects of climate change on the future conservation and distribution patterns of the cloud forests in eastern Mexico, by using as a species model to Fagus grandifolia Ehr. var. mexicana (Martínez) Little which is mainly located in this vegetation type, at the Sierra Madre Oriental. This species was selected because it is restricted to the cloud forest, where it is a dominant element and has not been considered for protection in any national or international law. It is probably threatened due to the fact that it plays an important social role as a source of food and furnishing. We used a floristic database and a bioclimatic modeling approach including 19 climatic parameters, in order to obtain the current potential distribution pattern of the species. Currently, its potential distribution pattern shows that it is distributed in six different Mexican Priority Regions for Conservation. In addition, we also selected a future climate scenario, on the basis of some climate changes predictions already proposed. The scenario proposed is characterized by +2 °C and −20% rainfall in the region. Under this predicted climatic condition, we found a drastic distribution contraction of the species, in which most of the remaining populations will inhabit restricted areas located outside the boundaries of the surrounding reserves. Consequently, our results highlight the importance of considering the effects of possible future climate changes on the selection of conservation areas and the urgency to conserve some remaining patches of existing cloud forests. Accordingly, we believe that our bioclimatic modeling approach represents a useful tool to undertake decisions concerning the definition of protected areas, once the current potential distribution pattern of some selected species is known.  相似文献   

9.
10.
Seed dispersal patterns were studied in a north-western Spain temperate forest community to assess the performances of alternative dispersal kernels during two years with ecologically contrasting scenarios; a non-mast year, and a mast year of the dominant canopy species, beech Fagus sylvatica. Dispersal kernels were fitted under a Bayesian modeling framework. Both simple and mixture kernels were considered for the five more abundant tree species (Corylus avellana, Crataegus monogyna, F. sylvatica, Ilex aquifolium and Taxus baccata). Mixture kernels provided a better fit for almost all species, and the log-normal performed best for T. baccata. No relationship between dispersal syndromes and the best dispersal kernel function emerged. However, we found temporal changes in the shape of the dispersal kernels that seemed to be related to variation in relative fruit production among species and the resulting changes in the responses of dispersal vectors. This reveals a potential role for disperser-mediated indirect effects in terms of introducing temporal variation in species spread. In this sense, our results highlight the need to consider single species seed dispersal as a community process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The structure and dynamics of approximately 64 ha of undisturbed gallery forest were studied over six years. Trees from 31 cm gbh (c. 10 cm dbh) were measured every three years from 1985. They were in 151 (10×20 m) permanent plots in the Gama forest in the Federal District of Brazil. Natural regeneration (individuals under 31 cm gbh) was measured in subplots (of 2×2 m, 5×5 m and 10×10 m) within the 200 m2 plots. The total tree flora (gbh31 cm) consisted of 93 species, 81 genera and 44 families in 1985. The Leguminosae, Myrtaceae and Rubiaceae were the families richest in number of species. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter per species ranged from 30 to 95 cm. The density structure of trees and natural regeneration was similar, in which the densities of c. 80% of the species represented less than 1% of the total density. The periodic mean annual diameter increment for trees from 10 cm dbh, was c. 0.25 cm/year. Variability was high with coefficients of variation c. 100% or more. The Gama community may maintain tree diversity and structure in undisturbed conditions. Regeneration of c. 80% of the species was found in the establishing phase (poles); the diameter structure was typical of native forests with the number of individuals decreasing with increasing size classes and showing little change over the six years; recruitment compensated for the mortality of most of the abundant species. The soils in Gama gallery forest were dystrophic with high aluminium content. Multivariate analysis suggested the stream, natural gaps and edges as the main causes of floristic differentiation at the community level.  相似文献   

12.
We related pteridophytes versus tree species composition to identify surrogate measures of diversity, and complementarity of seven cloud forest fragments. Forest structure, and fern and tree composition were determined in 70 (2 × 50 m) transects. Fern density (10,150–25,080 individuals/ha) differed among sites. We recorded 83 fern species in the transects. Nonparametric richness estimators indicated that more sampling effort was needed to complete fern inventories (14 more species). However, ferns recorded outside of the transects increased richness to 103 species (six more species than predicted). Twenty-eight species were unique and rare due to special habitat requirements (Diplazium expansum, Hymenophyllum hirsutum, Melpomene leptostoma, Terpsichore asplenifolia), or were at a geographical distribution edge (Diplazium plantaginifolium, Lycopodium thyoides, Pecluma consimilis, Polypodium puberulum). Correlations between fern richness and tree richness and density were not significant, but were significant between fern richness and fern density, between epiphytic fern density and tree richness and density. Tree richness is not a good surrogate for fern diversity. Only three species were recorded in all fragments (Polypodium lepidotrichum, P. longepinnulatum, P. plebeium); thus fragments pteridophytes compositions are highly complementary, but more similar for ferns than for trees. A regional conservation approach which includes many small reserves needs to focus supplementarity on patterns of tree and fern species richness.  相似文献   

13.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

14.
Baraloto C  Goldberg DE 《Oecologia》2004,141(4):701-712
We conducted a rigorous test of tropical tree seedling microhabitat differentiation by examining microhabitat associations, survival and growth of established seedlings of ten tropical tree species representing a four-factor gradient in seed size. Eight microhabitat variables describing soil and light conditions were measured directly adjacent to each of 588 seedlings within twelve 10×100 m belt transects at Paracou, French Guiana, and at 264 reference points along the transects. From these measurements, we defined three principal components describing soil richness, soil softness and canopy openness. Six of ten species (in 9 of 30 total cases) were distributed non-randomly with respect to microhabitat along at least one principal component. However, few species demonstrated clear microhabitat specialization. All shifts in distribution relative to reference points were in the same direction (richer, softer soil). Furthermore, of 135 pairwise comparisons among the species, only 7 were significantly different. More than three-fourths of all seedlings (75.3%) survived over the 2-year monitoring period, but survival rates varied widely among species. In no case was the probability of survival influenced by any microhabitat parameter. Relative height growth rates for the seedlings over 2 years varied from –0.031 cm cm–1 year–1 (Dicorynia guianensis, Caesalpiniaceae) to 0.088 cm cm–1 year–1 (Virola michelii, Myristicaceae). In only 4 of 30 cases was height growth significantly associated with one of the three principal components. Because the conditions in this study were designed to maximize the chance of finding microhabitat differentiation among a group of species differing greatly in life history traits, the lack of microhabitat specialization it uncovered suggests that microhabitat partitioning among tropical tree species at the established seedling stage is unlikely to contribute greatly to coexistence among these species.  相似文献   

15.
16.
The upper altitude ecosystems of the Andes are among the most threatened by climate change. Computer models suggest that a large percentage of species in these ecosystems will be at risk of extinction and that avian communities will suffer disruption and impoverishment. Studies in other Andean countries lend some support to these predictions, but there are no quantitative data from Colombia appropriate to test these models. In 1991–1992, we conducted a bird survey in a high Andean cloud forest to gather information about the species present and their abundance. We attempted to replicate this earlier study 24 yr later to detect any changes in the avifauna and determine possible causes for those changes. From June 2015 to May 2016, we made bimonthly trips to the study site and identified all birds detected either visually or by voice along a number of trails. We supplemented our observational data by also capturing birds in mist‐nets. Community species richness and composition as well as the overall abundance of birds changed little from 1991–1992 to 2015–2016, but nearly 30% of bird species changed in abundance. Changes in the presence or abundance of nine or 10 species reflected upward shifts in elevational limits potentially due to climate change. However, most changes in abundance appeared to reflect changes in the vegetation of the study area due to successional changes in forest and subparamo habitats and a large number of relatively recent treefalls of old canopy trees with heavy epiphyte loads and subsequent changes in the understory vegetation. Our results suggest that the effects of climate change on the avifauna in our study area at a high‐altitude site in Colombia are apparently occurring more slowly than predicted by recent computer models, although we conclude that the possible effects of climate change should definitely be considered in future studies. However, single‐site studies such as ours have limitations in documenting elevation shifts; the most conclusive and quantitative evidence for elevational shifts comes from long‐term studies conducted over a wide range of elevations. As such, we recommend establishment of such a monitoring program in Colombia because data obtained from such a program might be important in designing measures to mitigate the effects of climate change and conserve biodiversity.  相似文献   

17.
18.
The soil seed bank is a dynamic biotic component of plant communities that represents the population’s memory in relation to selective events. Few studies have investigated the natural stock of germinable seeds in the gallery forests to evaluate their regeneration potential, although they are target of anthropogenic action. Thus, seasonal, horizontal, and vertical qualitative and quantitative variations of the seed bank of a gallery forest in the Brazilian Cerrado were studied to test the influence of the climatic seasonality, the influence of the physical structure, and depth of the soil in different microhabitats of the forest in this natural seed store. It was also compared the richness and abundance of species in the germinable seed bank with the above-ground vegetation. Three hundred and seventy-five soil samples were collected at the beginning (April 1998 and 1999) and at the end of the dry season (September 1998). These samples were collected in three microhabitats distributed transversally in relation to drainage line of a large stream, at five depths. The density of germinable seeds decreases with depth, and is similar among microhabitats and seasons. In 24,690 cm3 of soil and 4.05 m2 of litter, 1390 seedlings emerged, being 743 dicotyledons and 647 monocotyledons. From 761 survivors, 263 were Cyperaceae, 206 Melastomataceae, 153 Poaceae, and 82 Onagraceae, the most abundant families. This study suggests that the diversity of the germinable soil seed bank is lower than that of the above-ground vegetation of the forest, and that the soil seed bank is not the principal regeneration form of this environment.  相似文献   

19.
Forests that are composed of two or more tree species with similar ecological strategies appear to contradict the competitive exclusion principle. Beech-maple communities are a well-known example of such a system. On a local scale, a number of mechanisms have been proposed to explain the coexistence of these two species. These are reciprocal replacement, external factors that favour alternatively one or the other species and demographic stochasticity. This paper presents and analyses a simple mathematical model that shows that external factors are not an essential requirement for coexistence. Rather, coexistence requires interspecific differences in light transmissivity through the crowns of adult trees. However, all the three mechanisms mentioned above can be interpreted within the framework of the model. Furthermore, many models of forest dynamics make use of shade tolerance as a key feature in describing successional dynamics. Despite its importance, however, shade tolerance does not have a commonly accepted quantitative definition. Here, a simple scheme is proposed where the relationship between shade tolerance, individual traits (growth and survival) and successional status is defined. This might have important implications in understanding the overall dynamics. Theoretical results have been compared with a number of studies carried out in North American forests. In particular, coexistence in beech-maple communities and the relation between shade tolerance and successional status in a beech-hemlock-birch community have been discussed.  相似文献   

20.
Question: Can the pattern and pace of spontaneous Fagus forest expansion from 1975 to 2003 be accurately detected with mid‐resolution satellite imagery? Can the historical Fagus expansion be modelled on the basis of environmental predictors? If so, where are the highest probabilities for future Fagus expansion? What are the implications for park management? Location: Majella National Park, Italy, > 1000 m a.s.l.; municipalities of S. Eufemia and Pacentro. Methods: Fagus cover change was detected by overlaying three classified sequential satellite images. Historical Fagus expansion was related to environmental variables using ordinary logistic and autologistic regression models. Fagus expansion probabilities were generated with the best predictive model. Results: From 1975 to 2003 Fagus advanced into abandoned farmland and subalpine pastures from the contiguous, midaltitudinal Fagus forest and from Fagus outliers, at a rate of 1.2 % per year. Substantial spatial and temporal variations in expansion rates were detected. The ordinary and autologistic models based on the single predictor Distance‐from‐Fagus‐1975 forecasted the Fagus expansion well (AUC 0.81 resp. 0.88). Multiple logistic models, including the topo‐climatic and substrate predictors, improved prediction insignificantly. The strong predictive power of proximity to historical Fagus presence is explained by the dispersal biology of Fagus combined with the shading impact of the Fagus canopy at the forest fringe. Conclusion: Decade‐long Fagus expansion patterns might be reliably forecasted by proximity to historical Fagus distribution. Consequences for park management options are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号