首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
An index based on chl a fluorescence quenching analysis was tested as a predictor of photosynthetic rates of undisturbed intertidal microphytobenthic assemblages. The fluorescence index, Pfluo, was derived from the combination of different chl a fluorescence parameters chosen to represent the two main sources of short‐term variability in the community‐level microphytobenthic photosynthesis: 1) the quantum yield of photosynthesis of the microalgae present in the photic zone of the sediment, φP, and 2) the community‐level efficiency of photosynthetic light absorption, ?, determined by the microalgal concentration in the photic zone. Variations in φP were traced by the fluorescence index ΔF/Fm′ (the effective quantum yield of charge separation at PSII), whereas changes in ? were followed by the fluorescence parameter Fo (dark or minimum fluorescence level). Gross photosynthetic rate, P, and fluorescence parameters were measured nondestructively and simultaneously under in situ conditions, on the same samples, using oxygen microelectrodes and pulse amplitude modulation fluorometry, respectively. Despite the large and uncorrelated hourly variability in irradiance, photosynthetic rate, and fluorescence parameters included in Pfluo, highly significant correlations between Pfluo and P were found for all the sampling periods, encompassing hourly, biweekly, and seasonal time scales. The variability in P explained by Pfluo ranged from 84.3% to 91.4% when sampling periods were considered separately and reached 81.1% when all data were pooled. The results of the study show that despite its simplicity, the index Pfluo can be used to trace short‐term variations in the photosynthetic rate of undisturbed microphytobenthic assemblages undergoing rhythmic vertical migration.  相似文献   

2.
Acclimation to UV radiation (UVR) was examined in a unicellular chlorophyte isolated from fumarole fields adjacent to Mt. Erebus, Antarctica. Long‐term exposure to UVR (14 days) initially reduced the efficiency of photosynthetic energy conversion measured as the dark adapted quantum yield of PSII fluorescence (Fv/Fm) when compared with cultures not exposed to UVR. However, the UVR exposed cultures recovered to pre‐UVR exposure levels of photosynthetic efficiency by the end of the experimental period. Additionally, neither growth rates nor cell size were significantly affected by exposure to UVR. In contrast, the maximum rate of carbon fixation on a chl a basis was significantly reduced at the end of the experiment and was accompanied by a significant decrease in chl a concentrations. These results suggest a transient effect of UVR on primary photochemistry consistent with damage to PSII, possibly at the D1 protein, with more chronic effects on carbon fixation that did affect maximum photosynthetic capacity. Ultrastructural and molecular (18s rDNA) data show that this isolate from the fumoral fields of Mt. Erebus, Antarctica is a member of the genus Scenedesmus.  相似文献   

3.
Zinc toxicity on photosynthetic activity in cells of Synechocystis aquatilis f. aquatilis Sauvageau was investigated by monitoring Hill activity and fluorescence. The oxygen‐evolving activity decreased to about 80% of the initial value after exposure to 0.1 mM ZnSO4 for 1 h. The PSII activity was inhibited by 40% in the presence of zinc concentrations ranging from 0.5 to 5.0 mM, suggesting that the metal effect is limited by zinc uptake. The fluorescence capacity (Fmax–F/Fmax) decreased from 0.57 to 0.35 and 0.20 in Zn‐treated cells for 15 and 60 min, respectively, thus providing evidence for rapid inactivation of electron transport at PSII. Zinc treatment promoted a rapid increase in PSII fluorescence that was counteracted by addition of 1,4‐benzoquinone, indicating that electron transfer at the reducing side of the PSII reaction center is arrested by zinc. Furthermore, a decline in the fluorescence yield could be observed after 1 h of zinc treatment as well as when Zn‐treated cells were excited in presence of 3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethylurea. Under these conditions, zinc did not affect energy transfer from phycobilisomes to PSII, and the gradual quenching of PSII fluorescence may be due to a decrease in electron flow on the donor side of PSII. However, the 20% increase in the minimal fluorescence intensity (Fo) in parallel to the absence of changes in the maximal fluorescence intensity (Fmax), observed in the first hour of zinc treatment, could also suggest a metal‐induced decline in the energy transfer from PSII‐chl a antenna to the PSII reaction center.  相似文献   

4.
In the article, we report that effects of nano-anatase on the spectral characteristics and content of light-harvesting complex II (LHCII) on the thylakoid membranes of spinach were investigated. The results showed that nano-anatase treatment could increase LHCII content on the thylakoid membranes of spinach and the trimer of LHCII; nano-anatase could enter the spinach chloroplasts and bind to PSII. Meanwhile, spectroscopy assays indicated that the absorption intensity of LHCII from nano-anatase-treated spinach was obviously increased in the red and the blue region, fluorescence quantum yield near 685 nm of LHCII was enhanced, the fluorescence excitation intensity near 440 and 480 nm of LHCII significantly rose and F 480/F 440 ratio was reduced. Oxygen evolution rate of PSII was greatly improved. Together, nano-anatase promoted energy transferring from chlorophyll (chl) b and carotenoid to chl a, and nano-anatase TiO2 was photosensitized by chl of LHCII, which led to enhance the efficiency of absorbing, transferring, and converting light energy.  相似文献   

5.
The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively.  相似文献   

6.
The influence of seasonally fluctuating photoperiods on the photosynthetic apparatus of Palmaria decipiens (Reinsch) Ricker was studied in a year‐round culture experiment. The optimal quantum yield (Fv/Fm) and the maximal relative electron transport rate (ETRmax), measured by in vivo chl fluorescence and pigment content, were determined monthly. During darkness, an initial increase in pigment content was observed. After 3 months in darkness, ETRmax and Fv/Fm started to decrease considerably. After 4 months in darkness, degradation of the light‐harvesting antennae, the phycobilisomes, began, and 1 month later the light harvesting complex I and/or the reaction centers of PSII and/or PSI degraded. Pigment content and photosynthetic performance were at their minimum at the end of the 6‐month dark period. Within 24 h after re‐illumination, P. decipiens started to accumulate chl a and to photosynthesize. The phycobiliprotein accumulation began after a time lag of about 7 days. Palmaria decipiens reached ETRmax values comparable with the values before darkness 7 days after re‐illumination and maximal values after 30 days of re‐illumination. Over the summer, P. decipiens reduced its photosynthetic performance and pigment content, probably to avoid photodamage caused by excess light energy. The data show that P. decipiens is able to adapt to the short period of favorable light conditions and to the darkness experienced in the field.  相似文献   

7.
The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse‐amplitude‐modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv/Fm), the effective PSII efficiency (ΦPSII), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of PI parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self‐shading (in relation to algal biomass) could have influenced photosynthesis in older communities.  相似文献   

8.
We studied the variability of in vivo absorption coefficients and PSII‐scaled fluorescence excitation (fl‐ex) spectra of high light (HL) and low light (LL) acclimated cultures of 33 phytoplankton species that belonged to 13 different pigment groups (PGs) and 10 different phytoplankton classes. By scaling fl‐ex spectra to the corresponding absorption spectra by matching them in the 540–650 nm range, we obtained estimates for the fraction of total chl a that resided in PSII, the absorption of light by PSII, PSI, and photoprotective carotenoids. The in vivo red peak absorption maxima ranged from 673 to 679 nm, reflecting bonding of chl a to different pigment proteins. A simple approach is presented for quantifying intracellular self‐shading and evaluating the impact of photoacclimation on biooptical characteristics of the different PGs examined. In view of these results, parameters used in the calculation of oxygenic photosynthesis based on pulse‐amplitude‐modulated (PAM) and fast‐repetition‐rate (FRR) fluorometers are discussed, showing that the ratio between light available to PSII and total absorption, essential for the calculation of the oxygen release rate (using the PSII‐scaled fluorescence spectrum as a proxy) was dependent on species and photoacclimation state. Three subgroups of chromophytes exhibited 70%–80%, 60%–80%, and 50%–60% chl a in PSII‐LHCII; the two subgroups of chlorophytes, 70% or 80%; and cyanobacteria, only 12%. In contrast, the mean fraction for chromo‐ and chlorophytes of quanta absorbed by PSII was 73% in LL‐ and 55% in HL‐acclimated cells; thus, the corresponding ratios 0.55 and 0.73 might be used as correction factors adjusting for quanta absorbed by PSII for PAM and FRR measurements.  相似文献   

9.
Light absorption by phytoplankton is both species specific and affected by photoacclimational status. To estimate oxygenic photosynthesis from pulse‐amplitude‐modulated (PAM) fluorescence, the amount of quanta absorbed by PSII needs to be quantified. We present here three different biooptical approaches to estimate the fraction of light absorbed by PSII: (1) the factor 0.5, which implies that absorbed light is equally distributed among PSI and PSII; (2) the fraction of chl a in PSII, determined as the ratio between the scaled red‐peak fluorescence excitation and the red absorption peak; and (3) the measure of light absorbed by PSII, determined from the scaling of the fluorescence excitation spectra to the absorption spectra by the “no‐overshoot” procedure. Three marine phytoplankton species were used as test organisms: Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum cf. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Haptophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae). Photosynthesis versus irradiance (P vs. E) parameters calculated using the three approaches were compared with P versus E parameters obtained from simultaneously measured rates of oxygen production. Generally, approach 1 underestimated, while approach 2 overestimated the gross O2‐production rate calculated from PAM fluorescence. Approach 3, in principle the best approach to estimate quanta absorbed by PSII, was also superior according to observations. Hence, we recommend approach 3 for estimation of gross O2‐production rates based on PAM fluorescence measurements.  相似文献   

10.
The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP 1327). Although cell chlorophyll a (chl a) content decreased in nutrient-starved cells, the ratios of light-harvesting accessory pigments (chl c and fucoxanthin) to chl a were unaffected by nutrient starvation. The chl a-specific light absorpition coefficient (a*) and the functional absorption cross-section of PSII (σ) increased during nutrient starvation, consistent with reduction of intracellular self-shading (i.e. a reduction of the “package effect”) as cells became chlorotic. The light-harvesting complex proteins remained a constant proportion of total cell protein during nutrient starvation, indicating that chlorosis mirrored a general reduction in cell protein content. The ratio of the xanthophylls cycle pigments diatoxanthin and diadinoxanthin to chl a increased during nutrient starvation. These pigments are thought to play a photo-protective role by increasing dissipation of excitation energy in the pigment bed upstream from the reaction centers. Despite the increase in diatoxanthin and diadinoxanthin, the efficiency of PSII photochemistry, as measured by the ration of variable to maximum fluorescence (Fv/Fm) of dark-adapted cells, declined markedly under nitrate and iron starvation and moderately under phosphate starvation. Parallel to changes in Fv/Fm were decreases in abundance of the reaction center protein D1 consistent with damage of PSII reaction centers in nutrient-starved cells. The relative abundance of the carboxylating enzyme, ribulose bisphosphate carboxylase/oxygenase (RUBISCO), decreased in response to nitrate and iron starvation but not phosphate starvation. Most marked was the decline in the abundance of the small subunit of RUBISCO in nitrate-starved cells. The changes in pigment content and fluorescence characteristics were typically reversed within 24 h of resupply of the limiting nutrient.  相似文献   

11.
The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.  相似文献   

12.
The photosynthetic response to light can be accurately defined in terms of (1) the initial slope (quantum yield); (2) the asymptote (light-saturated rate); (3) the convexity (rate of bending); and (4) the intercept (dark respiration). The effects of photoinhibition [which damages the reaction centre of photosystem II (PSII)] on these four parameters were measured in optically thin cultures of green plant cells (Chlamydomonas reinhardtii). The convexity of the light-response curve decreased steadily from a value of 0.98 (indicating a sharply bending response) to zero (indicating Michaelis-Menten kinetics) in response to increasing photoinhibition. Photoinhibition was quantified from the quantum yield of inhibited cells relative to that of control cells. The quantum yield was estimated by applying linear regression to low-light data or by fitting a non-rectangular hyperbola. Assuming the initial slope is linear allowed comparison with earlier work. However, as the convexity was lowered this assumption resulted in a significant underestimate of the true quantum yield. Thus, the apparent level of photoinhibition required for a zero convexity and the initial decrease in light-saturated photosynthesis depended upon how the quantum yield was estimated. If the initial slope of the light response was assumed to be linear the critical level of inhibition was 60%. If the linear assumption was not made, the critical level was 40%. At the level of inhibition where the convexity reached zero, the light-saturated rate of photosynthesis also began to decrease, indicating that this level of inhibition caused photosynthesis to be limited at all light intensities by the rate of PSII electron transport. At this level of inhibition the Fm-Fi signal (where Fm is maximal chlorophyll fluorescence and Fi is intermediate chlorophyll fluorescence of dark adapted cells; Briantais et al. 1988) from the fluorescence induction curve was zero and the Fi-Fo signal (where Fo is initial chlorophyll fluorescence of dark adapted cells) was 30% of the control, indicating dramatic reduction or complete elimination of one type of PSII. These data do not contradict published mathematical models showing that the ratio of the maximum speed of electron transport in PSII relative to the maximum speed of plastoquinone electron transport can determine the convexity of the photosynthetic response to light.Abbreviations and Symbols Chl chlorophyll content - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fo, Fi, Fm initial, intermediate, and maximal Chl fluorescence of dark adapted cells - P rate of net photosynthesis per unit chlorophyll (mol-(mg Chl)–1 · s–1) - PSII photosystem II - PQ plastoquinone - initial slope to the light-response curve - convexity (rate of bending) of the light-response curve of photosynthesis - Q photosynthetically active photon flux density (400–700 nm, mol · m–2 · –1) The present investigation was supported by the Swedish Council for Forestry and Agricultural Research, the Swedish Environmental Protection Board, and the Swedish Natural Science Research Council. We thank Dr. Deborah D. Kaska (Department of Biological Sciences, University of California, Santa Barbara, Calif., USA) for giving us Chlamydomonas algae. We thank Professor G. Öquist (Department of Plant Physiology, University of Umea, Umea, Sweden) for his encouragement, valuable comments and discussion.  相似文献   

13.
The effects of exogenous applied proline (Pro), on photosystem II (PSII) photochemistry of drought stressed (DS) 4-week old Arabidopsis thaliana plants, was studied by using chlorophyll (chl) fluorescence imaging. The maximum quantum yield of PSII photochemistry (F v /F m) in DS plants decreased significantly to 77% of that of the control value, suggesting that DS plants could not maintain PSII function, possibly due to accelerated photoinhibition of PSII. Free Pro and total soluble sugars (SS) increased, in response to DS. Exogenous foliar application of Pro by spraying, led to a remarkable increase in the accumulation of Pro and surprisingly also of SS. Both of them served to scavenge reactive oxygen species (ROS), as it was evident by the decreased lipid peroxidation level measured as malondialdehyde (MDA). DS plants sprayed with Pro showed a tolerance to photoinhibition, this indicated by F v/F m being close to values typical of healthy leaves by maintaining more than 98% of PSII function. Also the higher quantum efficiency of PSII photochemistry (Φ PSΙΙ ) and the decreased excitation pressure (1 ? q p ) recorded for stressed leaves with Pro, lead us to conclude that Pro appears to be involved in the protection of chloroplast structures by quenching ROS. The enhanced dissipation of excess light energy of PSII, in part accounts for the observed increased resistance to DS in A. thaliana leaves with Pro. Our data pointed out that Pro signalling interacts with SS signaling pathway and provided a new insight in Pro metabolism.  相似文献   

14.
In this study, the gas exchange, chlorophyll fluorescence, and antioxidant activity in eight tall fescue cultivars were investigated under aluminum stress. The results showed that the net photosynthetic rate (P N) and stomatal conductance (g s) were decreased, while the intercellular CO2 concentration (Ci) was stable or increased under Al stress conditions. The efficiency of excitation capture by open PSII reaction centers (Fv/Fm), the maximum quantum yield of PSII photochemistry (F v/F m), the quantum yield of PSII electron transport (ΦPSII), and the photochemical quenching (qP) were also decreased after Al stress, while the non-photochemical quenching (NPQ) was increased. Moreover, Al stress increased the antioxidant activities and MDA contents in each tall fescue cultivars. However, there was a lot genotype differences between the Al-tolerant and Al-sensitive cultivars. Cv. Barrington was the most sensitive cultivar and cv. Crossfire 2 was the most tolerant cultivar. The excessive excitation energy could not be dissipated efficiently by antenna pigments, and reactive oxygen species could not be scavenged efficiently, thereby resulting in membrane lipid peroxidation in cv. Barrington under Al stress conditions.  相似文献   

15.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

16.
Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas.  相似文献   

17.
Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2‐nonanone and 2‐undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB, electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2‐nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.  相似文献   

18.
Ultraviolet radiation effects were examined in natural phytoplankton communities from Rimouski (Canada), Ubatuba (Brazil), and Ushuaia (Argentina). Outdoor pump‐mixed mesocosms were submitted to ambient solar radiation (NUVB) and ambient with additional UV‐B radiation (UVBR) from lamps (HUVB), corresponding to a local 60% ozone depletion scenario. At all sites, neither algal biomass nor dark‐adapted Fv/Fm were significantly affected by additional UVBR, suggesting the presence of active UV protection or repair mechanisms. To examine the role of D1 protein turnover, essential for PSII repair, short‐term surface incubations were performed in the presence or absence of lincomycin, a chloroplast protein synthesis inhibitor. Effects on PSII were determined using chl a in vivo fluorescence, whereas the D1 protein was detected immunochemically. In the absence of D1 repair, D1 pools and Fv/Fm decreased to a similar extent under both light treatments. In the presence of D1 repair, D1 pools suffered faster net degradation under HUVB compared with NUVB, whereas Fv/Fm was maintained for both light treatments, suggesting that HUVB exposure in field populations had more effect on D1 synthesis and PSII repair than on D1 degradation. The fewer undamaged reaction centers remaining in phytoplankton under HUVB were able to maintain Fv/Fm or actually recovered during the dark acclimation before Fv/Fm measurements. The D1 pools suffered faster net degradation at the tropical site where high irradiance drove faster D1 degradation and high water temperature enabled fast enzymatic activities. This study shows the crucial role of dynamic changes in D1 turnover in the photobiology of natural planktonic communities across a range of latitudes.  相似文献   

19.
In photosynthetic organisms, light energy is absorbed by a complex network of chromophores embedded in light-harvesting antenna complexes. In photosystem II (PSII), the excitation energy from the antenna is transferred very efficiently to an active reaction center (RC) (i.e., with oxidized primary quinone acceptor Q A), where the photochemistry begins, leading to O2 evolution, and reduction of plastoquinones. A very small part of the excitation energy is dissipated as fluorescence and heat. Measurements on chlorophyll (Chl) fluorescence and oxygen have shown that a nonlinear (hyperbolic) relationship exists between the fluorescence yield (Φ F ) (or the oxygen emission yield, $ \Phi _{{{\text{O}}_{2} }} $ ) and the fraction of closed PSII RCs (i.e., with reduced Q A). This nonlinearity is assumed to be related to the transfer of the excitation energy from a closed PSII RC to an open (active) PSII RC, a process called PSII excitonic connectivity by Joliot and Joliot (CR Acad Sci Paris 258: 4622–4625, 1964). Different theoretical approaches of the PSII excitonic connectivity, and experimental methods used to measure it, are discussed in this review. In addition, we present alternative explanations of the observed sigmoidicity of the fluorescence induction and oxygen evolution curves.  相似文献   

20.
The emission spectra collected under conditions of open (F0) and closed (FM) photosystem II (PSII) reaction centres are close‐to‐independent from the excitation wavelength in Chlamydomonas reinhardtii and Chlorella sorokiniana, whereas a pronounced dependence is observed in Synechocystis sp. PCC6803 and Synechococcus PCC7942, instead. The differences in band‐shape between the F0 and FM emission are limited in green algae, giving rise only to a minor trough in the FV/FM spectrum in the 705–720 nm range, irrespectively of the excitation. More substantial variations are observed in cyanobacteria, resulting in marked dependencies of the measured FV/FM ratios on both the excitation and the detection wavelengths. In cyanobacteria, the maximal FV/FM values (0.5–0.7), observed monitoring at approximately 684 nm and exciting Chl a preferentially, are comparable to those of green algae; however, FV/FM decreases sharply below approximately 660 nm. Furthermore, in the red emission tail, the trough in the FV/FM spectrum is more pronounced in cyanobacteria with respect to green algae, corresponding to FV/FM values of 0.25–0.4 in this spectral region. Upon direct phycobilisomes excitation (i.e. >520 nm), the FV/FM value detected at 684 nm decreases to 0.3–0.5 and is close‐to‐negligible (approximately 0.1) below 660 nm. At the same time, the FV spectra are, in all species investigated, almost independent on the excitation wavelength. It is concluded that the excitation/emission dependencies of the FV/FM ratio arise from overlapped contributions from the three independent emissions of PSI, PSII and a fraction of energetically uncoupled external antenna, excited in different proportions depending on the respective optical cross‐section and fluorescence yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号