首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Estradiol and some selective estrogen receptor modulators (SERMs) are neuroprotective in a variety of experimental models of neurodegeneration, reduce the inflammatory response of glial cells, reduce anxiety and depression, promote cognition and modulate synaptic plasticity in the hippocampus of rodents. In this study we have assessed whether estradiol and two SERMs currently used in clinics, tamoxifen and raloxifene, affect medial prefrontal cortex function and morphology. Rats were ovariectomized and six days later some animals received a subcutaneous injection of the estrogenic compounds. In a first experiment animals were treated with estradiol benzoate or sesame oil vehicle. In a second experiment animals received raloxifene, tamoxifen or dimethyl sulfoxide as vehicle. Twenty four hours after the pharmacological treatment, animals were challenged to solve an allocentric working memory paradigm in a "Y" maze. Twenty trials consisting of a study phase and a test phase were conducted according to a delayed match-to-sample procedure in a single one-day session. Animals that were not submitted to behavioral test were used for Golgi analysis of the prefrontal cortex. Rats treated with estradiol benzoate, tamoxifen or raloxifene performed better in the Y maze and showed a significant increase in the numerical density of dendritic spines in secondary apical dendrites of layer III pyramidal neurons from the prelimbic/infralimbic prefrontal cortex, compared to their respective control groups. These findings suggest that estradiol, tamoxifen and raloxifene improve prefrontal cortex-related cognitive performance and modulate prefrontal cortex morphology in ovariectomized rats.  相似文献   

5.
We used ChIP‐Seq to map ERα‐binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF‐7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERα‐binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF‐7 cells (17%), it is only observed on a minority of E2‐regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERα DNA binding and prevent RNAPII loading on the promoter and coding body on E2‐upregulated genes. Both ligands act differently on E2‐downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2‐induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERα acts mechanistically different on E2‐activated and E2‐repressed genes.  相似文献   

6.
To investigate the differential short-term effects of selective estrogen receptor (ER) modulators (SERMs) on uterus, we treated adult ovariectomized rats with a novel SERM, ospemifene (Osp), two previously established SERMs (tamoxifen and raloxifene (Ral)) and estradiol. The expression of two estrogen-regulated early response genes c-fos and vascular endothelial growth factor (VEGF), and DNA synthesis were analysed at 1-24 h after treatment of ovariectomized rats. Induction of c-fos mRNA by each of the SERMs showed a biphasic pattern with peaks at 3 and 20 h, respectively. The maximum level of VEGF mRNA was observed at 1 h after raloxifene and 6 h after tamoxifen or ospemifene treatment. Maximum levels of the c-fos and VEGF mRNA after raloxifene treatment were higher than those seen after treatments with E2 or a corresponding dose of tamoxifen or ospemifene. DNA synthesis was significantly increased by ospemifene, tamoxifen and raloxifene both in luminal and glandular epithelium. The stimulation was transient, peaking at 16 h. In comparison, the maximum level observed at 16 h after E2 treatment sustained at least until 24 h. DNA synthesis in stromal cells was increased by the SERMs but not by E2 at 24 h. When treated together with E2, the SERMs were able to antagonise E2-stimulated DNA synthesis at 16 h. Our results demonstrate that the initial response of uterus to ospemifene, raloxifene and tamoxifen includes activation of early response genes and even transient stimulation of DNA synthesis in spite of their different long-term effects. However, the early stimulatory events may be mediated by different mechanisms leading to diverging pathways in various tissue compartments and development of differential SERM-specific long-term responses of uterus.  相似文献   

7.
Estrogen has many positive effects on neural tissue in experimental model systems, including stimulation of neurite growth and neurotransmitter synthesis and protection against diverse types of neural injury. In humans, estrogen treatment is reputed to protect against Alzheimer's disease. To investigate potential mediators of estrogen's action and determine whether selective estrogen receptor modulators (SERMs) such as tamoxifen have estrogen-like effects in the primate brain, we evaluated the expression of glucose transporters and insulin-like growth factor 1 (IGF1) and its receptor in the frontal cortex of ovariectomized rhesus monkeys. We treated one group for 3 days with vehicle, another with 17 beta estradiol (E2), and a third with tamoxifen. The expression of facilitative glucose transporters (Gluts) 1, 3, and 4 was investigated using in situ hybridization, immunohistochemistry, and immunoblot analysis. Gluts 3 and 4 were concentrated in cortical neurons and Glut1 in capillaries and glial cells. E2 treatment induced two- to fourfold increases in Glut3 and Glut4 mRNA levels and lesser but significant increases in Glut3 and 4 protein levels. E2 treatment induced an approximately 70% increase in parenchymal Glut1 mRNA levels, but did not appreciably affect vascular Glut1 gene expression. IGF1 and IGF1 receptor mRNAs were concentrated in cortical neurons in a distribution similar to Gluts 3 and 4. IGF1 mRNA levels were significantly increased in E2-treated animals but IGF1 receptor mRNA levels were not altered by hormone treatment. Tamoxifen increased cerebral cortical Glut3 and 4 mRNA levels, but did not affect Glut1, IGF1, or IGF1 receptor expression. This study provides novel data showing that Gluts 3 and 4 and IGF1 are coexpressed by primate cerebral cortical neurons, where their expression is enhanced by estrogen. These findings suggest that up-regulation of glucose transporter and IGF1 expression may contribute to estrogen's salutary effects on neural tissue. Tamoxifen, an antiestrogen at the breast, is shown to have estrogen-like effects on higher brain centers in the monkey, suggesting that some SERMs may share estrogen's neuroprotective potential for menopausal women.  相似文献   

8.
Complex behaviors, such as learning and memory, are associated with rapid changes in gene expression of neurons and subsequent formation of new synaptic connections. However, how external signals are processed to drive specific changes in gene expression is largely unknown. We found that the genome organizer protein Satb1 is highly expressed in mature neurons, primarily in the cerebral cortex, dentate hilus, and amygdala. In Satb1-null mice, cortical layer morphology was normal. However, in postnatal Satb1-null cortical pyramidal neurons, we found a substantial decrease in the density of dendritic spines, which play critical roles in synaptic transmission and plasticity. Further, we found that in the cerebral cortex, Satb1 binds to genomic loci of multiple immediate early genes (IEGs) (Fos, Fosb, Egr1, Egr2, Arc, and Bdnf) and other key neuronal genes, many of which have been implicated in synaptic plasticity. Loss of Satb1 resulted in greatly alters timing and expression levels of these IEGs during early postnatal cerebral cortical development and also upon stimulation in cortical organotypic cultures. These data indicate that Satb1 is required for proper temporal dynamics of IEG expression. Based on these findings, we propose that Satb1 plays a critical role in cortical neurons to facilitate neuronal plasticity.  相似文献   

9.
10.
A detailed analysis of the differential effects of estrogen (E) compared to raloxifene (Ral), a selective estrogen receptor modulator (SERM), following estrogen receptor (ER) binding in gynecological tissues was conducted using gene microarrays, Northern blot analysis, and matrix metalloproteinase (MMP) 2 activity studies. We profiled gene expression in the uterus following acute (1 day) and prolonged daily (5 wk) treatment of E and Ral in ovariectomized rats. Estrogen regulated twice as many genes as Ral, largely those associated with catalysis and metabolism, whereas Ral induced genes associated with cell death and negative cell regulation. Follow-up studies confirmed that genes associated with matrix integrity were differentially regulated by Ral and E at various time points in uterine and vaginal tissues. Additional experiments were conducted to determine the levels of MMP2 activity in uterus explants from ovariectomized rats following 2 wk of treatment with E, Ral, or one of two additional SERMs: lasofoxifene, and levormeloxifene. Both E and lasofoxifene stimulated uterine MMP2 activity to a level twofold that of Ral, whereas levormeloxifene elevated MMP2 activity to a level 12-fold that of Ral. These data show that one of the significant differences between E and Ral signaling in the uterus is the regulation of genes and proteins associated with matrix integrity. This may be a potential key difference between the action of SERMs in the uterus of postmenopausal women.  相似文献   

11.
12.
13.
14.
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex.  相似文献   

15.
Post‐training lateral hypothalamus (LH) intracranial self stimulation (ICSS) has a reliable enhancing effect on explicit memory formation evaluated in hippocampus‐dependent tasks such as the Morris water maze. In this study, the effects of ICSS on gene expression in the hippocampus are examined 4.5 h post treatment by using oligonucleotide microarray and real‐time PCR, and by measuring Arc protein levels in the different layers of hippocampal subfields through immunofluorescence. The microarray data analysis resulted in 65 significantly regulated genes in rat ICSS hippocampi compared to sham, including cAMP‐mediated signaling as one of the most significantly enriched Database for Annotation, Visualization and Integrated Discovery (DAVID) functional categories. In particular, expression of CREB‐dependent synaptic plasticity related genes (c‐Fos, Arc, Bdnf, Ptgs‐2 and Crem and Icer) was regulated in a time‐dependent manner following treatment administration. Immunofluorescence results showed that ICSS treatment induced a significant increase in Arc protein expression in CA1 and DG hippocampal subfields. This empirical evidence supports our hypothesis that the effect of ICSS on improved or restored memory functions might be mediated by increased hippocampal expression of activity‐dependent synaptic plasticity related genes, including Arc protein expression, as neural mechanisms related to memory consolidation .  相似文献   

16.
Hypoxia–ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA‐140‐5p (miR‐140‐5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR‐140‐5p provides cerebral protection using DEX to treat hypoxic–ischaemic brain damage (HIBD) in neonatal rats via the Wnt/β‐catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/β‐catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl‐2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, β‐catenin, TCF‐4, E‐cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR‐140‐5p and si‐Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR‐140‐5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/β‐catenin signalling pathway.  相似文献   

17.
18.
Al-Dhaheri MH  Shah YM  Basrur V  Pind S  Rowan BG 《Steroids》2006,71(11-12):966-978
Tamoxifen is currently used as adjuvant therapy for estrogen receptor (ER) positive breast cancer patients and as a chemopreventative agent. Although ER is a predictive marker for tamoxifen response, ER status fails to predict tamoxifen response in a significant number of patients highlighting the need to identify new pathways for tamoxifen sensitivity/resistance. To identify novel proteins induced by tamoxifen in breast cancer cells sensitive to tamoxifen growth inhibition, two-dimensional (2D) gel electrophoresis was used to profile proteins in T47D breast cancer cells. Six proteins were identified that were differentially regulated by 17beta-estradiol, 4-hydroxytamoxifen and the pure antagonist acolbifene (EM-652); calreticulin, synapse associated protein 1 (SYAP1), CD2 antigen binding protein 2 (CD2BP2), nucleosome assembly protein 1 like 1 (NAP1L1), d-3-phosphoglycerate dehydrogenase (3-PHGDH) and pyridoxine 5' phosphate oxidase (PNPO). At the mRNA level, these ligands differentially regulated expression of mRNAs encoding the identified proteins in T47D and MCF7 cells but had no effect on mRNA in ERalpha-negative MDA-MB-231 breast cancer cells. These novel SERM-regulated proteins may participate in new or existing pathways for sensitivity or resistance to SERMs.  相似文献   

19.
20.
Estrogen reduces the risk of Alzheimer disease (AD) in postmenopausal women, β‐amyloid (Aβ) burden in animal models of AD, and secretion of Aβ from neuronal cultures. The biological basis for these effects remains unknown. Aβ is proteolytically derived from the β‐amyloid precursor protein (βAPP) within the secretory pathway by distinct enzymatic activities known as β‐ and gamma‐secretase. Aggregated Aβ peptides are found predominantly within extraneuronal space and are believed to initiate toxic and inflammatory cascades leading to neuronal death. The major population of secreted Aβ peptides is generated within the trans‐Golgi‐network (TGN), also the major site of βAPP residence in neurons at steady state. Utilizing cell‐free systems derived from both neuroblastoma cells and primary neurons, we demonstrate that 17β‐estradiol (17β‐E2) stimulates formation of vesicles containing βAPP, from the TGN. Accelerated βAPP trafficking precludes maximal Aβ generation within the TGN. 17β‐E2 appears to modulate TGN phospholipid levels, particularly those of phosphatidylinositol, and recruit soluble trafficking factors, such as Rab11, to the TGN. Together, these results suggest that estrogen may exert its anti‐Aβ effects by regulating βAPP trafficking within the late secretory pathway. These results suggest a novel mechanism through which 17β‐E2 may act in estrogen‐responsive tissues and illustrate how altering the kinetics of a protein's transport can influence its metabolic fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号