首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ13C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (A max, V cmax, J max) and stomatal conductance (g s ) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in g s in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.  相似文献   

2.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

3.
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.  相似文献   

4.
The Neotropical Bromeliaceae display an extraordinary level of ecological variety, with species differing widely in habit, photosynthetic pathway and growth form. Divergences in stomatal structure and function, hitherto understudied in treatments of bromeliad evolutionary physiology, could have been critical to the generation of variety in ecophysiological strategies among the bromeliads. Because humidity is a key factor in bromeliad niches, we focussed on stomatal responses to vapour pressure deficit (VPD). We measured the sensitivity of stomatal conductance and assimilation rate to VPD in eight C3 bromeliad species of contrasting growth forms and ecophysiological strategies and parameterised the kinetics of stomatal responses to a step change in VPD. Notably, three tank‐epiphyte species displayed low conductance, high sensitivity and fast kinetics relative to the lithophytes, while three xeromorphic terrestrial species showed high conductance and sensitivity but slow stomatal kinetics. An apparent feedforward response of transpiration to VPD occurred in the tank epiphytes, while water‐use efficiency was differentially impacted by stomatal closure depending on photosynthetic responses. Differences in stomatal responses to VPD between species of different ecophysiological strategies are closely linked to modifications of stomatal morphology, which we argue has been a pivotal component of the evolution of high diversity in this important plant family.  相似文献   

5.
We have investigated the role of polyunsaturated fatty acids in photosynthesis using a triple mutant of Arabidopsis thaliana that lacks trienoic fatty acids (fad 3-2 fad 7-2 fad 8). Though this mutant is male sterile, vegetative growth and development under normal conditions are largely unaffected (McConn and Browse, 1996 Plant Cell 8: 403–416). At 0.2–1.0 kPa vapor pressure deficit (low VPD), maximum photosynthetic rates of wild-type and mutant plants were similar while stomatal conductance rates were up to 2 times higher in mutant plants. However, light-saturated rates of carbon assimilation and stomatal conductance in the mutant were lower than in wild-type plants when measured at ambient (35 Pa) CO2 and 2.0–2.8 kPa vapor pressure deficit (high VPD). The limitation to photosynthesis in the mutant plants at high VPD was overcome by saturating partial pressures of CO2 suggesting a stomatal limitation. Chlorophyll fluorescence measurements indicate that differences observed in maximum assimilation rates were not due to limitations within the photochemical reactions of photosynthesis. Stomatal response to VPD and intrinsic water use efficiency was drastically different in mutant versus wild-type plants. The results of this investigation indicate that for Arabidopsis, polyunsaturated fatty acids may be an important determinant of responses of photosynthesis and stomatal conductance to environmental stresses such as high VPD. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Two derivatives of shikimic acid were isolated from croziers of the dwarf tree fern, Dicksonia antarctica, and their structures were elucidated as 4-O-caffeoylshikimic acid and 4-O-(p-coumaroyl)-shikimic acid on the basis of mass spectrometric and NMR spectroscopic evidence.  相似文献   

7.
In NW Patagonia, South America, natural shrublands and mixed forests of short Nothofagus antarctica (G. Forst.) Oerst. trees are currently being replaced by plantations with Pseudotsuga menziesii (Mirb) Franco. This land use change is controversial because the region is prone to drought, and replacement of native vegetation by planted forests may increase vegetation water use. The goal of this study was to examine the physiological differences, especially the response of water flux and canopy conductance to microclimate, that lead to greater water use by exotic trees compared to native trees. Meteorological variables and sapflow density of P. menziesii and four native woody species were measured in the growing season 2005–2006. Canopy conductance (gc) was estimated for both the exotic (monoculture) and native (multi-species) systems, including the individual contributions of each species of the native forest. Sapflow density, stand-level transpiration and gc were related to leaf-to-air vapor pressure difference (VPD). All native species had different magnitudes and diurnal patterns of sapflow density compared to P. menziesii, which could be explained by the different gc responses to VPD. Stomatal sensitivity to VPD suggested that all native species have a stronger stomatal control of leaf water potential and transpiration due to hydraulic limitations compared to P. menziesii. In conclusion, differences in water use between a P. menziesii plantation and a contiguous native mixed forest of similar basal area could be explained by different gc responses to VPD between species (higher sensitivity in the native species), in addition to particular characteristics of the native forest structure.  相似文献   

8.
Summary Leaves of well-watered and mildly water-stressed seedlings of Betula pendula Roth. and Gmelina aroborea L. were subjected to a range of vapour pressure deficits (VPD) between 10 and 24 kPa. The stomatal conductance of birch seedlings decreased as VPD was increased and at least in mildly-stressed seedlings this response seemed to be closely linked to the water status of the air rather than to the bulk water status of the plant. Mild water stressing enhanced the degree of the stomatal humidity-response and resulted in a significant increase in the efficiency of water use at high VPD. Stomata of Gmelina were apparently insensitive to variation in VPD, but were more sensitive to a decrease in bulk leaf water status than were stomata of birch. Water use efficiency of Gmelina seedlings was comparatively high, even when VPD was high and the stomata were fully open.  相似文献   

9.
The internal conductance to CO2 supply from substomatal cavitiesto sites of carboxylation poses a large limitation to photosynthesis.It is known that internal conductance is decreased by soil waterdeficits, but it is not known if it is affected by atmosphericwater deficits (i.e. leaf to air vapour pressure deficit, VPD).The aim of this paper was to examine the responses of internalconductance to atmospheric and soil water deficits in seedlingsof the evergreen perennial Eucalyptus regnans F. Muell and theherbaceous plants Solanum lycopersicum (formerly Lycopersiconesculentum) Mill. and Phaseolus vulgaris L. Internal conductancewas estimated with the variable J method from concurrent measurementsof gas exchange and fluorescence. In all three species steady-statestomatal conductance decreased by 30% as VPD increased from1 kPa to 2 kPa. In no species was internal conductance affectedby VPD despite large effects on stomatal conductance. In contrast,soil water deficits decreased stomatal conductance and internalconductance of all three species. Decreases in stomatal andinternal conductance under water deficit were proportional,but this proportionality differed among species, and thus therelationship between stomatal and internal conductance differedamong species. These findings indicate that soil water deficitsaffect internal conductance while atmospheric water deficitsdo not. The reasons for this distinction are unknown but areconsistent with soil and atmospheric water deficits having differingeffects on leaf physiology and/or root–shoot communication. Key words: Carbon dioxide, drought, internal conductance, mesophyll conductance, photosynthesis, stomatal conductance, transfer conductance, vapour pressure deficit, water deficit Received 11 October 2007; Revised 9 November 2007 Accepted 15 November 2007  相似文献   

10.
Steady state and dynamic responses of two tree fern species of contrasting origins, Dicksonia antarctica (of Gondwanan origin) and Cyathea australis (Pan-tropical), were studied over two consecutive years under field conditions in a wet sclerophyll forest of south-east Australia. Irrespective of their different origins, there were no significant differences in photosynthetic performance between the two species. Growth irradiance and leaf temperature, but not plant water status, was significantly related to photosynthetic and morphological traits. At a common leaf temperature, maximum light-use efficiency of photosystem II (Fv/Fm) was significantly lower in winter than in summer, suggesting some limitation to PSII efficiency potentially associated with cold winter mornings. Both species displayed seasonal acclimation in a number of measured photosynthetic parameters and frond traits (i.e. Fv/Fm, Asat, gs, NA, total chlorophyll, SLA). Acclimation of stomatal density to spatial variation in growth irradiance seemed limited in both species, although stomatal pattern differed between species. Because there were no significant differences between the two species in photosynthetic parameters, both species can be described by common carbon gain and water use models at the leaf scale.  相似文献   

11.
Fern-feeding insects in Britain are mainly found on mature fronds in late summer. Six fern species (Dtyopteris filix-mas, D. dilatata, D. borreri, Phyllitis scolopendrium, Polyslkhum setiferum and Polypodium vulgare) were analysed for fibre, lignin, cellulose, tannins, cyanogenesis and thiaminase activity in an attempt to determine the biochemical basis for this seasonal pattern of attack. A bioassay was also carried out, using frond material incorporated in the diet of Spodoptera littoralis, to determine the effects of seasonal changes in fern toxins on a non-adapted, insect herbivore. The young fronds of all six species had a high protein content and low fibre-lignocellulose; protein levels decreased and cell wall materials increased as the fronds matured. Tannin concentrations and thiaminase activity showed a less consistent seasonal pattern. Tannins were present in the highest concentration in the young fronds of D. borreri, Polystichum and Polypodium and decreased with season; D. dilatata, Polystichum and Polypodium showed a similar pattern of thiaminase activity. The other species showed no strong seasonality in the levels of either tannins or thiaminase. No cyanogenic activity was detected in any of the fern species. Frond material from all six species decreased survivorship and growth rates of Spodoptera larvae. Larval performance and growth on diets containing fern material from young immature fronds was generally poorer than on diets containing material from mature fronds, collected later in the season. Neither tannin concentrations nor thiaminase activity levels closely corresponded to the observed interspecific and seasonal patterns of larval development and mortality, and other toxins must be involved. It is concluded that ferns are highly toxic to non-adapted herbivorous insects but the effects on adapted species are unknown. The restricted seasonal occurrence of a small number of insect species exhibiting specialized feeding habits suggests, however, that biochemical properties of the ferns determine this pattern of attack and limit the number of species which are able to exploit ferns as food resources.  相似文献   

12.
Temperature and vapor pressure deficit (VPD) effects on turfgrass growth are almost always confounded in experiments because VPD commonly is substantially increased in elevated-temperature treatments. The objective of this study as to examine specifically the influence of VPD on transpiration response of four ‘warm-season’ (C4) and four ‘cool-season’ (C3) turfgrasses to increasing VPD at a stable temperature (29.3 ± 1.5 °C). Although transpiration rates were noticeably lower in C4 grasses, transpiration rates increased linearly in response to increasing VPD across the range of 0.8–3.0 kPa. In contrast, transpiration rates of C3 increased sharply with increasing VPD across the range of low VPDs, but became constrained at higher VPDs (>1.35 kPa). Restricted transpiration rate at elevated VPD was most evident in Agrostis palustris and Lolium perenne. Assuming restricted transpiration rates reflect a limitation on leaf CO2 uptake, these results indicate that the commonly observed decline in growth of C3 (and success of C4) grasses at elevated temperature may include a sensitivity to elevated VPD.  相似文献   

13.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   

14.
The effects of leaf-air vapor pressure deficit (VPD) on the transient and steady-state stomatal responses to photon flux density (PFD) were evaluated in Piper auritum, a pioneer tree, and Piper aequale, a shade tolerant shrub, that are both native to tropical forests at Los Tuxtlas, Veracruz, México. Under constant high-PFD conditions, the stomata of shade-acclimated plants of both species were sensitive to VPD, exhibiting a nearly uniform decrease in gs as VPD increased. Acclimation of P. auritum to high light increased the stomatal sensitivity to VPD that was sufflcient to cause a reduction in transpiration at high VPD's. At low PFD, where gs was already reduced, there was little additional absolute change with VPD for any species or growth condition. The stomatal response to 8-min duration lightflecks was strongly modulated by VPD and varied between the species and growth light conditions. In P. aequale shade plants, increased VPD had no effect on the extent of stomatal opening but caused the rate of closure after the lightfleck to be faster. Thus, the overall response to a lightfleck changed from hysteretic (faster opening than closure) to symmetric (similar opening and closing rates). Either high or low VPD caused gs not to return to the steady-state value present before the lightfleck. At high VPD the value after was considerably less than the value before whereas at low VPD the opposite occurred. Shade-acclimated plants of P. auritum showed only a small gs response to lightflecks, which was not affected by VPD. Under sunfleck regimes in the understory, the stomatal response of P. aequale at low VPD may function to enhance carbon gain by increasing the induction state. At high VPD, the shift in the response enhances water use efficiency but at the cost of reduced assimilation.  相似文献   

15.
Summary Responses to humidity of net photosynthesis and leaf conductance of single attached leaves were examined in populations of herbs from wet soil sites in Beltsville, Maryland and Davis, California, USA. Plants were grown in controlled environments under three conditions which differed in the magnitude of the day-night temperature difference and in daytime air saturation deficit. No population differences in response were found in Abutilon theophrasti. In Amaranthus hybridus stomatal conductance and net photosynthesis were more reduced by increasing leaf to air water vapor pressure difference (VPD) in the population from Beltsville, but only for the growth condition with a constant 25°C temperature. In Chenopodium album, stomatal conductance was more sensitive to VPD in the population from Davis, but only for the growth condition with 28/22°C day/night temperatures. Population differences in the sensitivity to VPD of leaf conductance were associated with differences in leaf area to root weight ratio. The relative reduction of net photosynthesis as VPD increased was greater than, equal to, or less than the relative decrease in substomatal carbon dioxide partial pressure. The pattern depended on species, and on growth condition. From these results one can not conclude that environmental humidity has been a strong selective force in determining sensitivity to humidity of stomatal conductance.  相似文献   

16.
《Annals of botany》1996,77(6):605-613
To evaluate the effect of drought and vapour pressure deficit (VPD) on stomatal behaviour and gas exchange parameters, young kiwifruit vines (Actinidia deliciosavar.deliciosacv. Hayward) were exposed to alternating periods of drought and drought-relief over two growing seasons. Vines were grown either in the field or in containers. Stomatal conductance of fully-expanded leaves rapidly decreased as pre-dawn leaf water potential was reduced below a threshold value of -0.3MPa. Stomatal conductance reached minimum values of 10–20mmol m-2s-1. Transpiration rate was similarly sensitive to changes in leaf water status, whereas more severe drought levels were necessary to affect photosynthesis significantly. Net daily carbon gains were estimated at 4.7 and 2.7gm-2for irrigated and droughted vines, respectively. Gas exchange parameters recovered to values of irrigated vines within a few hours after relief of stress. Rate of recovery depended on the level of stress reached during the previous drought period. There was a steady decline in stomatal conductance when VPD was increased from 0.8 to 2.5kPa in both irrigated and droughted vines. The VPD at which stomatal conductance reached 50% of maximum values was 2.1–2.2kPa for both treatments. We conclude that stomata were highly sensitive to changes in soil water status and that midday depression of photosynthesis measured in kiwifruit vines was related to water deficits arising in the leaf because of both transpirational losses and to the direct effect of increasing VPD.  相似文献   

17.
A recent article published by Molina‐Montenegro et al. (Journal of Vegetation Science24: 463) examines the association of Antarctic native plant and lichen species to the lichen Usnea antarctica on Fildes Peninsula, King George Island, maritime Antarctica. The authors report that on two sites, five out of 13 and four out of 11 species of lichens and mosses were spatially associated with U. antarctica, suggesting positive interactions between them. Although Deschampsia antarctica does not grow naturally associated with U. antarctica, Molina‐Montenegro et al. carried out a transplantation experiment to demonstrate that the macrolichen acts as a nurse plant, improving the survival of the grass. Serious conceptual and methodological discrepancies emerge from a critical evaluation of this study, challenging their conclusions. First, we suspect that the author confused some lichen taxa, and we also disagree with macrolichens being treated as cushion plants, because rootless, poikilohydric and poikilothermic thallophytes such as lichens are unable to create a stable, enclave‐like microhabitat as vascular cushion plants do. Indeed, a critical evaluation of some of the micro‐environmental parameters measured indicates that there are no biologically meaningful differences between the U. antarctica thalli and surrounding open areas. Second, the lack of consideration of the life history of the species under study leads to confusion when (a) referring to the succession sequence of species that colonize the studied area and (b) interpreting the putative distribution patterns promoted by Usnea versus the substrate preferences of associated species. Third, the authors intend to demonstrate experimentally that Usnea can facilitate the survival of D. antarctica plants, transplanting adult plants and not seedlings between the lichen thalli, and it is not clear how the grass was planted – between or within the lichens – as at both experimental sites the lichens grow on stones or rocks. Facilitative interactions are present in the Antarctic and may play a pivotal role in the structure and functioning of the fragile Antarctic ecosystems. However, more rigorous and well‐planned research is needed to assess its presence, importance and involved mechanisms.  相似文献   

18.
The mold mite, Tyrophagus putrescentiae (Shrank), frequently infests a variety of stored food products in ideal, but rather limited conditions. Major factors limiting survival of this mite are the temperature and humidity imposed on T. putrescentiae as it develops within and disperses among sites. However, since relative humidity is dependent upon air temperature, determining survivability in a habitat can be difficult in the presence of structural temperature variations. Vapor pressure deficit (VPD) provides a method of combining both relative humidity and temperature into a single number that can be used to determine conditions detrimental to mite survival. This study utilized a bioassay format to measure mortality of T. putrescentiae when exposed to a range of seven temperatures (5–35°C), 10 relative humidities (0–100% RH), 17 exposure times (0.5–240 h), with and without food. With these combinations of temperature and RH, mortality curves (mortality versus time) that displayed a sigmoidal relationship were used to calculate LT50 and LT90 estimates. These mortality estimates were then regressed on their associated VPD and the resulting regressions (LT50 and LT90) were significant at P < 0.0001, and provided acceptable R 2 values ≥0.83, regardless of whether food was present or not. At room temperature, threshold of VPD for T. putrescentiae development was below 8.2 mbar, this estimate being initially calculated from published values. For mites exposed to drier conditions, above 8.2 mbar, survival time was curtailed dependant on the magnitude of VPD. As the VPD exceeded 12 mbar, mites experienced substantial (>90%) mortality within 58 (33, 101) h; and further increasing VPD decreased the time of exposure to achieve mortality. This study demonstrates that making subtle changes in humidity or temperature to reach a target VPD may provide control of mite outbreaks and reduce areas inhabitable for T. putrescentiae. With the recent revision of the genus Tyrophagus (Fan and Zhang 2007), T. putrescentiae was split and the commonly encountered peridomestic mite was renamed T. communis. Voucher specimens of the species we used were identified as T. communis (B. OConnor, pers. comm.). However, there are current discussions as to which species name will be applied to the more common mite species (P. Klimov, pers. comm.). For the purposes of this paper we will continue to use T. putrescentiae.  相似文献   

19.
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

20.
Genomewide SNP data generated by nontargeted methods such as RAD and GBS are increasingly being used in phylogenetic and phylogeographic analyses. When these methods are used in the absence of a reference genome, however, little is known about the locations and evolution of the SNPs. In using such data to address phylogenetic questions, researchers risk drawing false conclusions, particularly if a representative number of SNPs is not obtained. Here, we empirically test the robustness of phylogenetic inference based on SNP data for closely related lineages. We conducted a genomewide analysis of 75 712 SNPs, generated via GBS, of southern bull‐kelp (Durvillaea). Durvillaea chathamensis co‐occurs with D. antarctica on Chatham Island, but the two species have previously been found to be so genetically similar that the status of the former has been questioned. Our results show that D. chathamensis, which differs from D. antarctica ecologically as well as morphologically, is indeed a reproductively isolated species. Furthermore, our replicated analyses show that D. chathamensis cannot be reliably distinguished phylogenetically from closely related D. antarctica using subsets (ranging in size from 400 to 10 000 sites) of the 40 912 parsimony‐informative SNPs in our data set and that bootstrap values alone can give misleading impressions of the strength of phylogenetic inferences. These results highlight the importance of independently replicating SNP analyses to verify that phylogenetic inferences based on nontargeted SNP data are robust. Our study also demonstrates that modern genomic approaches can be used to identify cases of recent or incipient speciation that traditional approaches (e.g. Sanger sequencing of a few loci) may be unable to detect or resolve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号