首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domestic livestock influence patterns of secondary succession across forest ecosystems. However, the effects of cattle on the regeneration of tropical dry forests (TDF) in Mexico are poorly understood, largely because it is difficult to locate forests that are not grazed by cattle or other livestock. We describe changes in forest composition and structure along a successional chronosequence of TDF stands with and without cattle (chronic grazing or exclusion from grazing for ~ 8 year). Forest stands were grouped into five successional stages, ranging from recently abandoned to mature forest, for a total of 2.7 ha of the sampled area. The absence of cattle increased woody plant (tree and shrub) density and species richness, particularly in mid-successional and mature forest stands. Species diversity and evenness were generally greater in sites where cattle were removed and cattle grazing in early successional stands reduced establishment and/or recruitment of new individuals and species. Removal of cattle from forest stands undergoing succession appears to facilitate a progressive and non-linear change of forest structure and compositional attributes associated with rapid recovery, while cattle browsing acts as a chronic disturbance factor that compromises the resilience and structural and functional integrity of the TDF in northwestern Mexico. These results are important for the conservation, management, and restoration of Neotropical dry forests.  相似文献   

2.
Cattle and Weedy Shrubs as Restoration Tools of Tropical Montane Rainforest   总被引:4,自引:1,他引:3  
Over the last 150 years, a large proportion of forests in Latin America have been converted to pastures. When these pastures are abandoned, grasses may slow re‐establishment of woody species and limit forest regeneration. In this study, we explored the use of cattle in facilitating the establishment of woody vegetation in Colombian montane pastures, dominated by the African grasses Pennisetum clandestinum (Kikuyo) and Melinis minutiflora (Yaraguá). First, we described woody and herbaceous vegetation in grazed and non‐grazed pastures. Second, we tested the effect of grazing and seed addition on the establishment and growth of woody species. We also determined if the effect of grazing was different in P. clandestinum and M. minutiflora pastures. We found that low stocking density of cattle greatly increased density, number of branches per individual (a measure of “shrubiness”), and basal area of woody species, but also reduced woody plant species richness and diversity. In the grazed area, the shrubs Baccharis latifolia (Chilca) and Salvia sp. (Salvia) were the most abundant. The combined effect of grazing and shading from the shrubs reduced herbaceous vegetation by 52 to 92%. In the grazing/seed addition experiment, grazing increased establishment of woody seedlings, particularly of the shrub Verbesina arborea (camargo), but the largest effect was seed addition. Where grasses are an important barrier to regeneration, grazing can facilitate the establishment of shrubs that create a microhabitat more suitable for the establishment of montane forest tree species.  相似文献   

3.
We evaluated habitat characteristics of East Usambara wetland forests. The abundance and species composition in the tree, shrub and herbaceous layers were enumerated in two sets of nested plots, one set in a natural wetland forest and the second in a wetland forest that had been disturbed by small‐scale gold mining activities. Each set had thirty‐six 1 m × 1 m plots for herbs, inside nine 5 m × 5 m plots for shrubs, in three 20 m × 20 m plots for trees. The habitat profile of herbaceous – shrub – tree layers was found to be sharply different from one obtained in previous studies at the surrounding nonwetland forests as were species composition and abundance. Unlike in the nonwetland forests, the herbaceous layer was thick, the shrub layer very thin and the woody species density and richness much lower. Disturbance significantly reduced woody cover and changed species composition in the herbaceous layer. Recovery of the woody vegetation was low. Wetland forests in the East Usambaras form a small fraction of the total area, but they are a unique biodiversity repository, they appear to be an important carbon dioxide sink and to reserve and purify water. They are sensitive to disturbance and need protection.  相似文献   

4.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

5.
Community assembly rules have been extensively studied, but its association with regional environmental variation and land use history remains largely unexplored. Land use history might be especially important in Mediterranean forests, considering their historical deforestation and recent afforestation. Using forest inventories and historical (1956) and recent (2000) land cover maps, we explored the following hypotheses: 1) woody species assembly is driven by environmental factors, but also by historical landscape attributes; 2) recent forests exhibit lower woody species richness than pre‐existing due to the existence of colonization credits; 3) these credits are modulated by species’ life‐forms and dispersal mechanisms. We examined the association of forest historical type (pre‐existing versus recent) with total species richness and that of diverse life‐forms and dispersal groups, also considering the effects of current environment and past landscape factors. When accounting for these effects, no significant differences in woody species richness were found between forest historical types except for vertebrate‐dispersed species. Species richness of this group was affected by the interaction of forest historical type with distance to coast and rainfall: vertebrate‐dispersed species richness increased with rainfall and distance to the coast in recent forests, while it was higher in dryer sites in pre‐existing forests. In addition, forest historical types showed differences in woody species composition associated to diverse environmental and past landscape factors. In view of these results we can conclude that: 1) community assembly in terms of species richness is fast enough to exhaust most colonization credit in recent Mediterranean forests except for vertebrate‐dispersed species; 2) for these species, colonization credit is affected by the interplay of forest history and a set of proxies of niche and landscape constraints of species dispersal and establishment; 3) woody species assemblage is mostly shaped by the species’ ecological niches in these forests.  相似文献   

6.
Spatial and temporal isolation and environmental variability are important factors explaining variation in plant species composition. The effect of fragmentation and disturbance on woody plant species composition was studied using data from 32 remnant church forest patches in northern Ethiopia. The church forests are remnants of dry Afromontane forest, embedded in a matrix of intensively used crop and grazing lands. We used canonical correspondence analysis and partial canonical correspondence analysis to analyze the effects of fragmented and isolated forest-patch identity, environmental and spatial variables on woody plant species composition in different growth stages. The dominance of late successional species was higher at the adult growth stage than seedlings and saplings growth stages. In the adult stages, late successional species like Olea europaea subsp. cuspidate had high frequency of occurrence. Forest patch identity was more important in explaining woody plant assemblages than environmental and spatial variables. For all growth stages combined, environmental variables explained more of the explained total fraction of variation in species composition than spatial variables. Topographic variables best explained variations in species composition for saplings, adults and all growth stages combined, whereas the management regime was most important for seedlings species composition. Our results show that in a matrix of cultivated and grazing land, fragmented and isolated forest patches differ in woody plant species assemblages. Some species are widely distributed and occurred in many patches while other occurred only in one or a few forest patches. Thus, our results indicate that remnant forest patches are important for preserving rare plant species and therefore management practices should focus on minimizing disturbance to the church forests and if possible increase church forest patch size.  相似文献   

7.
Shrub encroachment can follow grazing or burning release in páramo grasslands. While encroachment decreases herbaceous species richness in some grassland systems, the effects of this process on the herbaceous community in páramo grasslands are currently unknown. We collected data on shrub cover, herbaceous‐species cover and species composition in a páramo grassland 12 years after release from burning and cattle grazing near Zuleta, Ecuador. Topographic and soil measures were also included as predictor variables of differences in community composition. Contrary to studies in other systems, shrub cover did not have a significant effect on herbaceous‐species richness, whereas shrub‐species richness significantly increased with shrub cover. However, shrub cover was associated with significant shifts in herbaceous–community composition. Most notably, there was an increase in some shade‐tolerant forbs and tall‐statured wetland grasses with increasing shrub cover, and a corresponding decrease in some short‐statured grasses and early successional forbs. These results could indicate that the ameliorative effects of shrubs (e.g. frost and wind protection) in harsh alpine environments may partially compensate for the expected competitive effect of shrubs due to shading.  相似文献   

8.
Question: Thousands of small isolated forest fragments remain around churches (“church forests”) in the almost completely deforested Ethiopian Highlands. We questioned how the forest structure and composition varied with altitude, forest area and human influence. Location: South Gondar, Amhara National Regional State, Northern Ethiopia. Methods: The structure and species composition was assessed for 810 plots in 28 church forests. All woody plants were inventoried, identified and measured (stem diameter) in seven to 56 10 m x 10‐m plots per forest. Results: In total, 168 woody species were recorded, of which 160 were indigeneous. The basal area decreased with tree harvest intensity; understorey and middle‐storey density (<5 cm DBH trees) decreased with grazing; overstorey density (>5 cm DBH trees) increased with altitude. The dominance of a small set of species increased with altitude and grazing intensity. Species richness decreased with altitude, mainly due to variation in the richness of the overstorey community. Moreover, species richness in the understorey decreased with grazing intensity. Conclusions: We show how tree harvesting intensity, grazing intensity and altitude contribute to observed variations in forest structure, composition and species richness. Species richness was, however, not related to forest area. Our study emphasizes the significant role played by the remaining church forests for conservation of woody plant species in North Ethiopian Highlands, and the need to protect these forests for plant species conservation purposes.  相似文献   

9.
The species–environment relationships for woody species may vary according to the forest layers considered. In fragmented forest, spatial configuration may also influence forest layer composition. We investigated the relationships between four forest layer compositions and environmental conditions, and spatial variables accounting for forest fragmentation, in 59 forest stands. Field and shrub layer compositions were mainly linked to environmental conditions, particularly to soil pH and slope aspect, while the upper layer compositions were principally correlated to the spatial configuration. The distance from the forest edge was correlated with all the forest layer compositions. Our results suggest that woody species respond to factors acting at different spatial and temporal scales, depending on the forest layer they belong to. The species–environment relationship seems to weaken from the lower to upper layer, the upper layer being more closely linked to the spatial configuration and probably to the past management. This study underlines the importance of taking spatial configuration in addition to environmental conditions into account when studying woody plant diversity for different forest layers in stands located in deciduous fragmented forests. Moreover, stand history seems to have a lasting effect on woody plant composition, particularly for the tree layer.  相似文献   

10.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

11.
Tropical dry forests have been reduced to less than 0.1% of their original expanse on the Pacific side of Central America and are considered by some to be the most endangered ecosystem in the lowland tropics. Plots 1000 m2 were established in seven tropical dry forests in Costa Rica and Nicaragua in order to compare levels of species richness to other Neotropical dry forest sites and to identify environmental variables associated with species richness and abundance. A total of 204 species and 1484 individuals 2.5 cm were encountered. Santa Rosa National Park was the richest site with the highest family (33), genera (69), and species (75) diversity of all sites. Species richness and forest structure were significantly different between sites. Fabaceae was the dominant tree and shrub family at most sites, but no species was repeatably dominant based on number of stems in all fragments of tropical dry forest. Central American dry forests had similar species richness when compared to other Neotropical forests. There was no correlation between forest cover within reserves, or precipitation and plant species richness. There was a significant correlation between anthropogenic disturbance (intensity and frequency of fire, wood collection, grazing) and total species richness, tree and shrub species richness, and liana abundance. These results suggest controlling levels on anthropogenic disturbance within reserves should be a high priority for resource managers in Central America. Further research in forest fragments which examine individual and a combination of disturbance agents would help clarify the importance of anthropogenic disturbance on species richness and abundance.  相似文献   

12.
To control shrubs, which are increasing in dominance in wetlands worldwide, winter burning may be an important tool, especially from the perspective of minimizing urban hazards. The goal of this project was to determine if winter burning was successful in reducing the dominance (mean percentage cover and maximum height) of Cornus sericea in sedge meadows in southern Wisconsin, where shrubs proliferated after cattle were excluded. Experimental burn and control plots were set up within sedge meadows, including an ungrazed “reference” site that had been little, if ever, grazed and a “historically grazed” site, a recovery site that had not been grazed by cattle since 1973. None of the dominant species including C. sericea was significantly affected by burning for either mean percentage cover or maximum height (analysis of variance: no burning × species interaction). Both mean percentage cover and maximum height were only weakly related to burning (28.1 and 14.3% of the variability contributed to the cumulative percentage of the coefficient of determination, respectively) at both sites based on non‐metric multidimensional scaling analysis. Although species richness increased in burned plots in 1999 and 2000, no differences were apparent between pre‐burned and unburned plots in 1997 and unburned plots in 1999 and 2000 (analysis of variance: year × burning interaction). After burning in the ungrazed site, herbaceous species appeared that had not been detected for decades, including Chelone glabra and Lathyrus palustris. Exotic species were present in both the ungrazed reference and recovery site. Although winter burning treatments did not reduce the dominance of woody shrub species in the site recovering from cattle grazing, burning was useful in stimulating the maintenance of species richness in the ungrazed sedge meadow.  相似文献   

13.
Grazing is one of the prevalent human activities that even today are taking place inside protected areas with direct or indirect effects on ecosystems. In this study we analyzed the effects of grazing on plant species diversity, plant functional group (PFG) diversity and community composition of shrublands. We analyzed plant diversity data from 582 sampling plots located in 66 protected areas of the Greek Natura 2000 network, containing in total 1102 plant species and subspecies. We also classified a priori all plant species in seven PFGs: annual forbs, annual grasses/sedges, legumes, perennial forbs, perennial grasses/sedges, small shrubs and tall shrubs. For each site, grazing intensity was estimated in four classes (no grazing, low, medium and high grazing intensity). We found that, at the spatial and temporal scale of this study, as grazing intensity increased, so did total species richness. However, each PFG displayed a different response to grazing. Short-lived species (annual grasses or forbs and legumes) benefited from grazing and their species richness and proportion in the community increased with grazing. Perennial grasses and forbs species richness increased with grazing intensity, but their dominance decreased, since their proportion in the community declined. Short shrub species richness remained unaffected by grazing, while tall shrub diversity decreased. Finally, in sites without grazing the spatial pattern of species richness of the different PFGs was not congruent with each other, while in grazed sites they were significantly positively correlated (with the exception of tall shrubs). This finding may imply that grazing is a selective pressure organizing the community structure, and imposing a certain contribution of each PFG. So, in Mediterranean shrublands in protected areas with a long historical record of grazing, it seems that grazing promotes species diversity and its continuation on a portion of the landscape may be a necessary part of an effective management plan.  相似文献   

14.
Aim To evaluate the relative importance of climate, productivity, environmental heterogeneity, biotic associations and habitat use by cattle to account for the species richness of trees, shrubs and herbs across the Subantarctic–Patagonian transition. Location An area of c. 150 × 150 km, within the transition zone between the Subantarctic and Patagonian subregions on the eastern slope of the Andes (c. 39–42° S, 70–72° W). Methods All vascular plants found at each one of 50 (10 × 10 m) sampling plots were counted to estimate the local tree, shrub and herb species richness. Path analysis was used to evaluate the relationship between the richness of the three life‐forms and plant cover, dried litter biomass, mean annual temperature, annual precipitation, daily temperature range, substrate heterogeneity and number of faecal pats. Principal coordinates of neighbour matrices was used to model the spatial autocorrelation of the data. Results Total plant species richness showed a unimodal pattern of spatial variation across the transition. Richness responded positively to indirect effects of precipitation mediated through plant cover, but there was a negative overall effect of precipitation on richness towards the west of the transition, most strongly for trees. An increase in substrate heterogeneity promoted a local increase in herb and shrub richness; the richness of trees increased in sites with steeper slopes. Canopy closure had a direct negative impact on herb richness; it also increased the local accumulation of litter, which negatively affected shrub and herb richness. The impact of habitat use by cattle negatively affected herb richness in areas to the east of the biogeographical transition. Main conclusions We suggest that the importance of indirect climatic effects mediated by vegetation cover can account for species richness patterns across this transition, most strongly for woody species, which supports the productivity hypothesis. The southern temperate forests towards the west may represent a deviation from the predictions of the water–energy dynamics hypothesis. Dissimilar spatial patterns of variation in the richness of woody and herbaceous species, and their different responses to climatic and heterogeneity variables across the transition, suggest that plant life‐form influences the plant species richness–environment relationships.  相似文献   

15.
Abstract In the dry eucalypt forests of north‐eastern New South Wales, Australia, cattle grazing occurs at low intensities and is accompanied by frequent low‐intensity burning. This study investigated the combined effects of this management practice on the ground‐dwelling and arboreal (low vegetation) spider assemblages. Spiders were sampled at 49 sites representing a range of grazing intensities, using pitfall trapping, litter extraction and sweep sampling. A total of 237 spider morphospecies from 37 families were collected using this composite sampling strategy. The abundance, richness, composition and structure of spider assemblages in grazed and ungrazed forest sites were compared and related to a range of environmental variables. Spider assemblages responded to a range of environmental factors at the landscape, habitat and microhabitat scales. Forest type, spatial relationships and habitat variability at the site scale were more important in determining spider assemblages than localized low‐intensity grazing and burning. However, it is possible that a threshold intensity of grazing may exist, above which spiders respond to grazing and burning. Although low‐intensity grazing and burning may not affect spider assemblages below a threshold stocking rate, that stocking rate has yet to be established.  相似文献   

16.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

17.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

18.
Abstract. Successional patches are a large component of forest ecosystems throughout the world and their vegetation composition is conditioned by multiple factors such as land use history, disturbances, environmental conditions and landscape context. We investigated the relative contribution of historical, environmental, biotic and spatial factors in determining vegetation composition and invasion by exotic species in secondary forest patches of Sierra de San Javier, Tucumán, Argentina. We estimated canopy cover for shrub, vine and tree species distributed over 51 patches with known land use history. We also recorded environmental, historical and spatial variables and used multivariate techniques to explore the relationship between forest composition and explanatory variables. Land use, time since abandonment, altitude, slope and cover of different strata were related to the vegetation pattern in the study site, and they were all significantly structured over space. Exotic species appeared to differ from natives in their response to explanatory variables. Overall, exotic species were dominant on the edges of young patches originated from herbaceous crops, but the total number of exotic species was related to the distance to urban areas and small farms identified as potential sources of exotic propagules. Vegetation composition of secondary forests in NW Argentina was related to historical and environmental factors, but spatial variables strongly influenced vegetation composition as well as the variation in explanatory variables.  相似文献   

19.
20.
Abstract In eastern Australia the practice of grazing cattle in eucalypt forests and woodlands, as a supplementary activity to farmland grazing, is widespread. It is typically accompanied by burning at frequent intervals by graziers to promote more nutritious and digestible growth of the ground cover for their livestock. Collectively, these forest grazing practices affect understorey structure, which in turn affects other biotic and abiotic components of these ecosystems. In order to test how significant the effects of forest grazing practices are relative to the effects of other management practices and environmental variables and the degree to which grazing practices determine understorey vegetation structure, we surveyed 58 sites on the northern tablelands of New South Wales, Australia. All sites were located in eucalypt forest and were stratified by grazing status (presence or absence): time since logging, time since wildfire, geology, aspect, slope and topographic position. At each site an index of vegetation complexity and the most abundant plant species were recorded. The data were analysed by a backwards stepwise multiple regression. Grazing practices had the greatest influence on understorey vegetation complexity of any of the measured attributes. The grazed sites were characterized by a significantly lower vegetation complexity score, different dominant understorey species, reduced or absent shrub layers, and an open, simplified and more grassy understorey structure compared with ungrazed sites. Time since logging and time since wildfire also significantly affected understorey structure. Our results indicate that cattle grazing practices (i.e. grazing and the associated frequent fire regimes) can have major effects on forest structure and composition at a regional level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号